Human embryonic stem cells (hESCs) replicate by the process of self-renewal, whilst maintaining their pluripotency. Understanding the pathways involved in the regulation of this self-renewal process will assist in developing fully-defined conditions for the proliferation of hESCS required for therapeutic applications. We previously demonstrated a role for Sphingosine-1-phosphate (S1P) in the survival and proliferation of hESCs. The present study investigates further key signalling pathways and the downstream targets of S1P.
Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells.
No sample metadata fields
View SamplesEnhanced secondary Ab responses are a vital component of adaptive immunity, yet little is understood about the intrinsic and extrinsic regulators of nave and memory B cells that results in differences in their responses to Ag. Microarray analysis, together with surface and intracellular phenotyping, revealed that memory B cells have increased expression of members of the TNF receptor, SLAM, B7 and Bcl2 families, as well as the TLR-related molecule CD180 (RP105). Accordingly, memory B cells exhibited enhanced survival, proliferation and Ig secretion, as well as entered division more rapidly than nave B cells in response to both T-dependent and T-independent stimuli. Furthermore, both IgM and isotype switched memory B cells, but not nave B cells, co-stimulated CD4+ T cells in vitro through a mechanism dependent on their constitutive expression of CD80 and CD86. This study demonstrates that upregulation of genes involved in activation, co-stimulation and survival provides memory B cells with a unique ability to produce enhanced immune responses and contributes to the maintenance of the memory B cell pool.
Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells.
Specimen part
View SamplesCells were isolated from healthy human donors (n=2). Unstimulated cells. Cells were stained with CD4, CD45RA, CCR7 and CXCR7. Using flow cytometry, 4 CD4+ T cell populations were sorted: (1) Nave (CD45RA+CCR7+CXCR5-), (2) Central memory (CD45RA-CCR7+CXCR5-), (3) Effector memory (CD45RA-CCR7-CXCR5-) and (4) CXCR5+ cells (CD45RA-CCR7-CXCR5+)
CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses.
Specimen part
View SamplesThe accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) causes stress and induces the unfolded protein response (UPR) which is characterised in part by the transcriptional induction of genes involved in assisting protein folding. Translational responses to ER stress have been less well described and here we report on a genome-wide analysis of translational regulation in the response to the ER stress-inducing agent dithiothreitol (DTT) in Saccharomyces cerevisiae. Although the observed polysome profiles were similar under control and ER stress conditions microarray analysis identified transcipt-specific translational regulation. Genes with functions in ribosomal biogenesis and assembly were translationally repressed under ER stress. In contrast mRNAs for known UPR genes, including the UPR transcription factor HAC1, the ER-oxidoreductase ERO1 and the ER-associated protein degradation (ERAD) gene DER1 were enriched in polysomal fractions under ER stress conditions. In addition, we show that splicing of HAC1 mRNA is required for efficient ribosomal loading and that Gcn2p is required for normal HAC1 splicing, so shedding light on the role of this protein kinase in the UPR pathway.
Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Novel genes associated with lymph node metastasis in triple negative breast cancer.
Specimen part, Disease stage, Subject
View SamplesTriple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis. It is characterised by the absence of hormone receptors for estrogen, progesterone, and human epidermal growth factor 2, and as a consequence there are no targeted endocrine treatments available. TNBC patients are more likely to develop metastases and disease relapse than patients with other breast cancer subtypes. The identification of biomarkers that can be used to predict which patient is likely to develop metastatic disease remains a priority since this is the major cause of cancer-related death in these women.
Novel genes associated with lymph node metastasis in triple negative breast cancer.
Specimen part
View SamplesTriple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis. It is characterised by the absence of hormone receptors for estrogen, progesterone, and human epidermal growth factor 2, and as a consequence there are no targeted endocrine treatments available. TNBC patients are more likely to develop metastases and disease relapse than patients with other breast cancer subtypes. The identification of biomarkers that can be used to predict which patient is likely to develop metastatic disease remains a priority since this is the major cause of cancer-related death in these women.
Novel genes associated with lymph node metastasis in triple negative breast cancer.
Specimen part, Disease stage, Subject
View SamplesWe used RNA-seq to monitor mRNA levels of all genes in response to hypoxia of wild-type yeast, S. cerevisiae (strain yMH914 with wildtype HAP1). To gain insights into how gene expression changes over time, cells were subjected to 100% nitrogen gas and collected after 0,5,10,30,60,120,180, and 240 minutes. Total RNA was extracted and mRNAs were enriched by polyA selection. The cDNA was prepared into a sequencing library, multiplexed and single-end sequenced by an Illumina HiSeq 2500 sequencer. After mapping with Tophat2, the number of reads per feature was calculated using HTSeq. Overall design: RNA-seq analysis of eight time points of a yeast strain grown in hypoxia. There are three biological replicates of the time course.
Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.
Subject
View SamplesSkeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic myotubes in keeping with a retained genetic/epigenetic defect of insulin action.
p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients.
Specimen part
View SamplesPurpose: The goal of this study is to compare the transcriptional phenotype of lymphoid and kidney-infiltrating T cell populations in the setting of systemic inflammatory disease to determine how tissue location alters their phenotype. Methods: mRNA profiles of T cells isolated from 23-week-old nephritic (protein score of 3+ on dipstick) mice were used in this study. T cells were isolated by flow cytometry gated on CD45+Thy1.1+CD44+ and either CD4 or CD8+ T cells. RNA was isolated using the RNeasy Plus Micro Kit (Qiagen). Samples were sequenced using Illumina NextSeq 500 with 75bp paired-end reads and aligned to the mm10 genome using the STAR aligner. The number of uniquely aligned reads ranged from 10 to 12 million. Using an optimized data analysis workflow, Gene-level counts were determined using featureCounts and raw counts were analyzed for differential expression using the “voom” method in the “limma” R package. Results: After determining genes that were differentially expressed between splenic T cells and KIT, we performed gene set enrichment analysis (GSEA. Differentially expressed genes were compared to several previously defined gene signatures that are characteristic of CD8+ and CD4+ T cell exhaustion in the chronic LCMV infection model and tumor infiltrating lymphocytes. Genes from the CD8+ exhaustion cluster were significantly enriched among genes that were differentially expressed in CD8+ KITs vs CD8+ splenocytes. Overall design: mRNA profiles of CD4 and CD8 T cells from spleen and kidney of 23 week old wild MRL/lpr mice were generated in triplicate by sequencing using Illumina NextSeq 500
Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted.
Age, Specimen part, Cell line, Subject
View Samples