The human seminal plasma is a potential source of biomarkers for male reproductive disorders. A tissue-profiling analysis of the main organs participating in the secretion of this body fluid was conducted to identify tissue-specific genes along the male reproductive tract.
Identification of genital tract markers in the human seminal plasma using an integrative genomics approach.
Specimen part
View SamplesNutritional and genetic risk factors for intestinal tumors are additive on mouse tumor phenotypes, demonstrating that diet and genetic factors impact risk by distinct combinatorial mechanisms. We analyzed expression profiles of small intestine crypts and villi from mice with nutritional and genetic risk factors. The results advanced our understanding of the mechanistic roles played by major risk factors in the pathogenesis of intestinal tumors.
Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer.
Age, Specimen part
View SamplesInsulin-like growth factor receptor-1 (IGF-1R) inhibition could be a relevant therapeutic approach in small cell lung cancer (SCLC) given the importance of an IGF-1R autocrine loop and its role in DNA damage repair processes. We assessed IGF-1R and pAkt protein expression in 83 SCLC human specimens. The efficacy of R1507 (a monoclonal antibody directed against IGF-1R) alone or combined with cisplatin or ionizing radiation (IR) was evaluated in H69, H146 and H526 cells in vitro and in vivo. Innovative genomic and functional approaches were conducted to analyze the molecular behavior under the different treatment conditions. A total of 53% and 37% of human specimens expressed IGF-1R and pAkt, respectively. R1507 demonstrated single agent activity in H146 and H526 cells but not in H69 cells. R1507 exhibited synergistic effects with both Cisplatin and IR in vitro. The triple combination R1507-Cisplatin-IR led to a dramatic delay in tumor growth compared to Cisplatin-IR in H526 cells. Analyzing the apparent absence of antitumoral effect of R1507 alone in vivo, we observed a transient reduction of IGF-1R staining intensity in vivo, concomitant to the activation of multiple cell surface receptors and intracellular proteins involved in proliferation, angiogenesis and survival. Finally, we identified that the nucleotide excision repair pathway (NER) was mediated after exposure to R1507-CDDP and R1507-IR in vitro and in vivo. In conclusion, adding R1507 to the current standard Cisplatin-IR doublet reveals remarkable chemo- and radiosensitizing effects in selected SCLC models and warrants to be investigated in the clinical setting.
IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy.
Specimen part, Treatment
View SamplesProstate cancer is dependent on androgen receptor (AR) signaling at all stages of the disease and cyclin D1 has been shown to negatively modulate the expression of the AR-dependent gene prostate specific antigen (KLK3/PSA).
Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function.
Cell line, Treatment
View SamplesBAF57, a component of the SWI/SNF chromatin remodeling complex conglomerate,modulates androgen receptor activity to promote prostate cancer. However the molecular consequences of tumor associated BAF57 elevation have remianed undefined in advanced disease such as castration resistant prostate cancer and/or metastasis
Aberrant BAF57 signaling facilitates prometastatic phenotypes.
Specimen part, Treatment
View SamplesCDK4/6 kinase inhibitors have shown great promise in clinical trials in various cancer types and have recently entered clinical trial for advanced prostate cancer. Although patients are expected to respond well to this class of drugs, development of resistance in some patients is anticipated. To pre-empt this and study how prostate cancer may evade CDK4/6 inhibition, new resistance models were generated from LNCaP and LAPC4 prostate cancer cells cells by prolonged culturing in presence of 0.5uM palbociclib. RNA sequencing data was integrated with phospho-proteomics to unravel the molecular underpinnings of acquired resistance to palbociclib and resultant broad CDK4/6 inhibitor resistance. Overall design: Thirty total sample: three biological replicates of vehicle control and PD treated parental and Palbociclib (PD) resistant cells (PDR) that were generated from LAPC4 and LNCaP cells.
MAPK Reliance via Acquired CDK4/6 Inhibitor Resistance in Cancer.
Specimen part, Subject
View SamplesTo provide further insight to the signaling pathways deregulated by SPOP mutation and determine the relevance of these models to human prostate cancer, we performed RNA-seq on SPOP mutant organoids and controls. RNA-seq reads mapped to human and mouse SPOP confirmed appropriate expression of the F133V transgenic transcript without overexpression compared to endogenous mouse Spop. Quantification of gene expression was performed via RSEQtools using GENCODE as reference gene–annotation set. Both SPOPmut and SPOPwt were done in the same run. S0 was done in first run; S1 and S2 were done in second run. S3, S4 and S5 were done in third run. S5mut and S5wt were excluded from differentially expressed genes analysis, due to the different mouse line. Overall design: Differentially expressed genes between mouse SPOPmut organoids and control by RNA-seq.
SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell cycle-coupled expansion of AR activity promotes cancer progression.
Cell line
View SamplesEvaluation of the genome wide impact of cell cycle position on DHT stimulated gene expression programs. Results show differential cell cycle regulated gene expression in different cell cycle phases.
Cell cycle-coupled expansion of AR activity promotes cancer progression.
Cell line
View SamplesCyclin D1b is a splice variant of the cell cycle regulator Cyclin D1 and is known to harbor divergent and highly oncogenic functions in human disease. While Cyclin D1b is induced during disease progression in many cancer types, the mechanisms underlying Cyclin D1b function remain poorly understood. Herein, models of human disease were utilized to resolve the downstream pathways requisite for the pro-tumorigenic functions of Cyclin D1b. Specifically, it was shown that Cyclin D1b modulates the expression of a large transcriptional network that cooperates with AR signaling to enhance tumor cell growth and invasive potential. Notably, Cyclin D1b promoted AR-dependent activation of genes associated with metastatic phenotypes. Further exploration determined that transcriptional induction of SNAI2 (Slug) was essential for Cyclin D1b- mediated proliferative and invasive properties, implicating Slug as a critical driver of disease progression. Importantly, Cyclin D1b expression highly correlated with that of Slug in clinical samples of advanced disease. Further, in vivo analyses provided strong evidence that Slug enhances both tumor growth and homing to distal soft tissues. Collectively, these findings reveal the underpinning mechanisms behind the pro-tumorigenic functions of Cyclin D1b, and demonstrate that the convergence of the Cyclin D1b-AR and Slug pathways results in the activation of processes critical for the promotion of lethal tumor phenotypes.
Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes.
Specimen part, Cell line
View Samples