We sequenced mRNA extracted from heads of a D. melanogaster population that was sedated with a stream of ethanol saturated vapor, 30 minutes before RNA extraction; and from an age-matched untreated control group. Differential gene expression between the two groups was calculated and reported. Overall design: Examination of mRNA levels in heads of D. melanogaster adult females after ethanol exposure was performed using next generation sequencing (NGS) technology.
Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.
Cell line, Treatment, Subject
View SamplesPurpose: Identification of relevant genetic pathways that are altered with aging knowing that the precursors for bone-forming osteoblasts reside in the mesenchymal cell population of bone marrow. Method: harvested and characterized, without in vitro culture, mesenchymal cells form human bone marrow capable of osteogenic differentiation Results: Identification of differentially regulated genes with aging in a highly enriched human bone marrow mesenchymal cell population. Conclusions: we have for the first time identified age-related differential gene expression and DNA methylation patterns in a highly enriched human bone marrow mesenchymal cell populationprofiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. Overall design: Examination of gene expression and DNA methylation patterns from a highly enriched bone marrow mesenchymal cell population from young (mean age, 28.7 years) versus old (mean age, 73.3 years) women
Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.
Specimen part, Subject
View SamplesAutophagy is a homeostatic cellular process involved in the degradation of long-lived/damaged cellular components. The role of autophagy in adipogenesis is well recognized, but its role in mature adipocyte function is largely unknown. We show that the autophagy proteins Atg3 and Atg16L1 are required for proper mitochondrial function in mature adipocytes. In contrast to previous studies, we found that post-developmental ablation of autophagy causes peripheral insulin resistance independently of diet or adiposity. Finally, lack of adipocyte autophagy reveals a - cross talk between fat and liver mediated by lipid peroxide-induced Nrf2 signaling. Our data reveal a - role for autophagy in preventing lipid peroxide formation and their transfer in insulin-sensitive peripheral tissues Overall design: Epididymal adipose tissue from 4 WT and 4 Adiponectin-Cre Atg3f/f male mice fed chow diet
Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk.
Specimen part, Cell line, Subject
View SamplesUsing a syngeneic p53 null mouse mammary gland tumor model that closely mimics human breast cancer, we have identified by limiting dilution transplantation as well as in vitro mammosphere and clonogenic assays a Lin-CD29HighCD24High subpopulation of tumor-initiating cells. Differentially expressed genes in the Lin-CD29HighCD24High mouse mammary gland tumor-initiating cell population include those involved in DNA damage response and repair, as well as genes involved in epigenetic regulation previously shown to be critical for stem cell self-renewal.
Identification of tumor-initiating cells in a p53-null mouse model of breast cancer.
No sample metadata fields
View SamplesThe objective of this study was to identify transcriptional changes differentially regulated by GDF11 stimulation compared to TGFB1
Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer.
Specimen part
View SamplesCancer cells have abnormal gene expression profiles, however, the transcription factors and the architecture of the regulatory network that drive cancer specific gene expression is often not known. Here we studied a model of Ras-driven invasive tumorigenesis in Drosophila epithelial tissues and combined in vivo genetics with high-throughput sequencing and computational modeling to decipher the regulatory logic of tumor cells. Surprisingly, we discovered that the bulk of the tumor specific gene expression is driven by an ectopic network of a few transcription factors that are overexpressed and/or hyperactivated in tumor cells. These factors are Stat, AP-1, the bHLH proteins Myc and AP-4, the nuclear hormone receptor Ftz-f1, the nuclear receptor coactivator Taiman/AIB1, and Mef2. Notably, many of these transcription factors are also hyperactivated in human tumors. Bioinformatics analysis predicted that these factors directly regulate the majority of the tumor specific gene expression, that they are interconnected by extensive cross-regulation, and that they show a high degree of co-regulation of target genes. Indeed, the factors of this network were required in multiple epithelia for tumor growth and invasiveness and knock-down of individual factors caused a reversion of the tumor specific expression profile, but had no observable effect on normal tissues. We further found that the Hippo pathway effector Yki/Sd was strongly activated in tumor cells and initiated cellular reprogramming by activating several transcription factors of this network. Thus, modeling regulatory networks identified an ectopic yet highly ordered network of master regulators that control tumor cell specific gene expression. Overall design: RNA-seq gene expression profiling across Drosophila 3rd instar larval wild type wing discs and genetic perturbations of wts.
An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model.
Subject, Time
View SamplesSnapshot of translation in mammalian cells that are depleted of polyamines or replete with polyamines. Hek293T cells treated with DFMO or Spermidine. Overall design: DFMO vs. Spermidine treatment
Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.
Disease, Treatment, Subject
View SamplesMENX is a rat multiple endocrine neoplasia syndrome caused by a homozygous mutation of the Cdkn1b gene, encoding p27Kip1. Affected rats develop adrenomedullary hyperplasia which progresses to pheochromocytoma with time (incidence 100%), and to extra-adrenal pheochromocytoma (paraganglioma) (68%).
Pheochromocytoma in rats with multiple endocrine neoplasia (MENX) shares gene expression patterns with human pheochromocytoma.
Sex, Age
View SamplesHuman clinical trials in type 1 diabetes (T1D) patients are underway using mesenchymal stem cells (MSC) without prior validation in a mouse model for the disease. In response to this void, we characterized bone marrow-derived murine MSC for their ability to modulate immune responses in the context of T1D, as represented in non-obese diabetic (NOD) mice. In comparison to NOD-, BALB/c-MSC express higher levels of the negative costimulatory molecule PD-L1 and promote a shift toward Th2-like responses in treated NOD mice. In addition, transfer of MSC from resistant strains (i.e. NOR or BALB/c), but not from NOD mice, conferred disease protection when administered to prediabetic NOD mice. The number of BALB/c-MSC trafficking to the pancreatic lymph nodes of NOD mice was higher than in NOD mice provided autologous NOD-MSC. Administration of BALB/c-MSC resulted in reversal of hyperglycemia in 90% of NOD mice (p=0.002). Transfer of autologous NOD-MSC imparted no such therapeutic benefit, and in fact soft tissue and visceral tumors were uniquely observed in this setting (i.e. no tumors were present with BALB/c- or NOR-MSC transfer). These data provide important preclinical data supporting the basis for further development of allogeneic MSC-based therapies for T1D and potentially, other autoimmune disorders.
Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes.
No sample metadata fields
View SamplesGene signatures were derived to separate responders from nonresponders by tipifarnib treatment.
Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia.
Sex, Age
View Samples