Analysis of p53 binding sites using multiplex enhancer reporter assays, ChIP-seq data and RNA-seq data. Transcription factors establish and maintain the specific transcriptome of a cell by binding to genomic regulatory regions, thereby regulating the transcription of their target genes. Like many transcription factors, the DNA sequence-specific binding preferences of p53 are known. However, it remains largely unclear what distinguishes functional enhancers from other bound genomic regions that have no regulatory activity. In addition, the genome is scattered with seemingly perfect recognition sequences that remain unoccupied. To disentangle the rules of genome-wide p53 binding, we employed two complementary techniques of multiplex enhancer-reporter assays, one using barcoded reporters and the other using enhancer self-transcription. We compared the activity of more than one thousand candidate p53 enhancers under loss and gain of p53 conditions and identified several hundred high-confidence p53-responsive enhancers. Strikingly, the large majority (99%) of these target enhancers can be characterized and distinguished from negative sequences by the occurrence of a single p53 binding site. By training a machine learning classifier on these data, and integrating the resulting genome-wide predictions with fifteen publicly available human p53 ChIP-seq data sets, we identified a consensus set of 1148 functional p53 binding sites in the human genome. Unexpectedly, this direct p53 cistrome is invariably used between cell types and experimental conditions, while differences between experiments can be largely attributed to indirect non-functional binding. Our data suggest that direct p53 enhancers function in a context-independent manner and do not contain obvious combinatorial complexity of binding sites for multiple transcription factors. They represent a class of unsophisticated cell-autonomous enhancers with a single binding site, distinct from complex developmental enhancers that integrate signals from multiple transcription factors. This suggests that context-dependent regulation of p53 target genes is not encoded in the p53 enhancer, but at different upstream or downstream layers of the cell''s gene regulatory network. Overall design: RNA-seq on MCF7 cells with p53 stable knockdown.
Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic.
No sample metadata fields
View SamplesMalignant gliomas constitute one of the most significant areas of unmet medical need, due to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We found that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated to invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a crtitical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signaling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signaling. Overall design: Transcriptomic analysis of two different stages of gliomagenesis
Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network.
Specimen part, Cell line, Subject
View SamplesTransdifferentiation of fibroblasts into induced Neuronal cells (iNs) by neuronal-specific transcription factors Brn2, Myt1l and Ascl1 is a paradigmatic example of inter-lineage conversion across epigenetically distant cells. Despite tremendous progress on the transcriptional hierarchy underlying transdifferentiation, the enablers of the concomitant epigenome resetting remain to be elucidated. Here we investigated the role of KMT2A and KMT2B, two histone H3 lysine 4 methylases with cardinal roles in development, through individual and combined inactivation. We found that Kmt2b, whose human homologue's mutations cause dystonia, is selectively required for iN conversion through the suppression of the alternative myocyte program and the induction of neuronal maturation genes. Overall design: In order to study the role of KMT2A and KMT2B during transdifferentiation, we employed conditional mouse strains carrying: i) the exon 2 of Kmt2a and/or Kmt2b flanked by LoxP sites; ii) the knock-in of the YFP-coding gene into one Rosa26 allele, downstream of a LoxP-flanked transcription termination cassette (STOP cassette); and iii) the gene coding for the tamoxifen-inducible version of Cre recombinase knocked into the second Rosa26 allele (Glaser et al., 2006; Kranz et al., 2010; Testa et al., 2004). MEFs were derived from Kmt2a (and/or Kmt2b)fl/fl Cre+ YFP+ embryos and from Kmt2a+/+Kmt2b+/+ Cre+ YFP+ or Kmt2afl/+ Cre+ YFP+ for Kmt2a conditional KO (cKO) as controls (Figure 1A), and were subjected to transdifferentiation. After 13 days of BAM treatment, cells were FACS sorted for PSA-NCAM expression, and the transcriptome of positive and negative cells were independently profiled.
KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes.
Specimen part, Subject
View SamplesRNA-seq and ChIP-seq on MCF-7 breast cancer cell line upon activation of p53 by the non-genotoxic small molecule Nutlin-3a Overall design: RNA-seq on MCF7 without (NS) or with Nutlin-3a stimulation (S), in duplicate, using illumina HiSeq 2000
iRegulon: from a gene list to a gene regulatory network using large motif and track collections.
Specimen part, Cell line, Subject
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer resulting from malignant transformation of T-cell precursors. Several oncogenes, including the 'T-cell leukemia homeobox 1' TLX1 (HOX11) transcription factor, have been identified as early driver events that cooperate with other genetic aberrations in leukemic transformation of progenitor T-cells. The TLX1 controlled transcriptome in T-ALL has been investigated extensively in the past in terms of protein-coding genes, but remains unexplored thus far at the level of long non-coding RNAs (lncRNAs), the latter renown as well-established versatile and key players implicated in various cancer hallmarks. In this study, we present the first extensive analysis of the TLX1 regulated transcriptome focusing on lncRNA expression patterns. We present an integrative analysis of polyA and total RNA sequencing of ALL-SIL lymphoblasts with perturbed TLX1 expression and a primary T-ALL patient cohort (including 5 TLX1+ and 12 TLX3+ cases). We expanded our initially presented dataset of TLX1 and H3K27ac ChIP data in ALL-SIL cells (Durinck et al., Leukemia, 2015) with H3K4me1, H3K4me3, and ATAC-seq data to accurately define (super-) enhancer marked lncRNAs and assigned potential functional annotations to candidate TLX1-controlled lncRNAs through an in silico guilt-by-association approach. Our study paves the way for further functional analysis of selected lncRNAs as potential novel therapeutic targets for a precision medicine approach in the context of T-ALL. Overall design: polyA+ RNA-seq data was generated for a primary T-ALL patient cohort
A comprehensive inventory of TLX1 controlled long non-coding RNAs in T-cell acute lymphoblastic leukemia through polyA+ and total RNA sequencing.
Subject
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer resulting from malignant transformation of T-cell precursors. Several oncogenes, including the 'T-cell leukemia homeobox 1' TLX1 (HOX11) transcription factor, have been identified as early driver events that cooperate with other genetic aberrations in leukemic transformation of progenitor T-cells. The TLX1 controlled transcriptome in T-ALL has been investigated extensively in the past in terms of protein-coding genes, but remains unexplored thus far at the level of long non-coding RNAs (lncRNAs), the latter renown as well-established versatile and key players implicated in various cancer hallmarks. In this study, we present the first extensive analysis of the TLX1 regulated transcriptome focusing on lncRNA expression patterns. We present an integrative analysis of polyA and total RNA sequencing of ALL-SIL lymphoblasts with perturbed TLX1 expression and a primary T-ALL patient cohort (including 5 TLX1+ and 12 TLX3+ cases). We expanded our initially presented dataset of TLX1 and H3K27ac ChIP data in ALL-SIL cells (Durinck et al., Leukemia, 2015) with H3K4me1, H3K4me3, and ATAC-seq data to accurately define (super-) enhancer marked lncRNAs and assigned potential functional annotations to candidate TLX1-controlled lncRNAs through an in silico guilt-by-association approach. Our study paves the way for further functional analysis of selected lncRNAs as potential novel therapeutic targets for a precision medicine approach in the context of T-ALL. Overall design: Total RNA-seq data was generated for the T-ALL cell line ALL-SIL upon TLX1 knockdown
A comprehensive inventory of TLX1 controlled long non-coding RNAs in T-cell acute lymphoblastic leukemia through polyA+ and total RNA sequencing.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages.
Sex, Specimen part, Subject
View SamplesWe apply the cellular reprogramming experimental paradigm to two disorders caused by symmetrical copy number variations (CNV) of 7q11.23 and displaying a striking combination of shared as well as symmetrically opposite phenotypes: Williams Beuren syndrome (WBS) and 7q microduplication syndrome (7dup). Through a uniquely large and informative cohort of transgene-free patient-derived induced pluripotent stem cells (iPSC), along with their differentiated derivatives, we find that 7q11.23 CNV disrupt transcriptional circuits in disease-relevant pathways already at the pluripotent state. These alterations are then selectively amplified upon differentiation into disease-relevant lineages, thereby establishing the value of large iPSC cohorts in the elucidation of disease-relevant developmental pathways. In addition, we functionally define the quota of transcriptional dysregulation specifically caused by dosage imbalances in GTF2I (also known as TFII-I), a transcription factor in 7q11.23 thought to play a critical role in the two conditions, which we found associated to key repressive chromatin modifiers. Finally, we created an open-access web-based platform (accessible at http://bio.ieo.eu/wbs/ ) to make accessible our multi-layered datasets and integrate contributions by the entire community working on the molecular dissection of the 7q11.23 syndromes.
7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages.
Sex, Specimen part, Subject
View SamplesFunctional characterization of AtWRKY72 using Arabidopsis T-DNA insertion lines showed that this gene is important for basal defense to root-knot nematode (RKN) and Hyaloperonospora parasitica arabidopsis (Hpa), but not several tested R gene-mediated defenses.To profile transcriptional reprogramming associated with AtWRKY72-dependent basal defense we used Affymetrix ATH1 GeneChips representing ~24,000 Arabidopsis genes. Three independent biological replicates were performed with Col-0, wrky72-1 and wrky72-2 plants at 96 hpt with HpaNoco2 or mock treatment. Using a false discovery rate of less than 0.05 we identified for each of these three lines genes that showed significant transcriptional changes in response to HpaNoco2 compared to the mock-treated controls. Identification of downstream targets of WRKY72 in Arabidopsis by this microarray suggests that WRKY72 uses a unique signaling pathway that involves AP2/ERF TFs independent of the ethylene signaling pathway.
WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
GeneChip analysis of human embryonic stem cell differentiation into hemangioblasts: an in silico dissection of mixed phenotypes.
No sample metadata fields
View Samples