Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.
Early immunologic events at the tick-host interface.
Specimen part, Time
View SamplesTo determine whether the intestine-restricted transcription factor (TF) CDX2 functionally interacts with the endoderm-wide TF HNF4A, we crossed tissue-specific conditional Cdx2 and Hnf4a knockout mice to generate compound mutant mice. We used RNA-sequencing to profile gene expression changes in compound mutant mice compared to control mice. The compound mutant mice had a significantly worse phenotype than either single mutant, and gene expression was significantly perturbed in compound mutants compared to control mice. Overall design: Total RNA isolated from control and compound mutant (Hnf4a-del;Cdx2-del) jejunal mouse intestinal epithelium was prepared for sequencing using the TruSeq RNA Sample Preparation Kit (Illumina) according to the manufacturer''s instructions. 75-base-pair single-end reads were sequenced on an Illumina NextSeq 500 instrument. The data include 2 independent biological replicates per genotype.
Transcription factors GATA4 and HNF4A control distinct aspects of intestinal homeostasis in conjunction with transcription factor CDX2.
No sample metadata fields
View SamplesPURPOSE: Previous mouse studies using corn oil (-6) as the dietary fat source suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. However, other studies, in which the diet was composed around saturated fat, showed no difference in outcomes between high-fat and low-fat diets. The relative effects of other fats, such as fish oil and olive oil, also remain unexplored. To our knowledge, no trial has yet compared the effect of various fats on prostate cancer progression. Therefore, we sought to systematically study the effect of fish oil, olive oil, corn oil, and saturated fat on prostate cancer progression. METHODS: A total of 96 male SCID mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were singly-housed and randomized to either a fish oil, olive oil, corn oil, or saturated fat based diet. Animals were euthanized when tumors reached 1,000 mm3. Serum was collected at sacrifice and assayed for PSA, insulin, IGF-1, IGFBP-3, and PGE-2 levels. Tumors were also assayed for PGE-2, and COX-2 levels, and gene array analysis was performed. RESULTS: Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish-oil consumption was associated with improved survival, relative to all other dietary groups (Log-rank, all p<0.05). We did not detect any significant difference in serum PSA, insulin, IGF-1, IGFBP-3, and PGE-2 levels. Glucose at the time of sacrifice was statistically different between groups, with the fish-oil fed mice having the highest levels of serum glucose (Kruskal-Wallis, p=0.03).
Fish oil slows prostate cancer xenograft growth relative to other dietary fats and is associated with decreased mitochondrial and insulin pathway gene expression.
Specimen part
View SamplesCD133-positive colorectal cancer cells exhibit enhanced tumorigenicity over CD133-negative cells. The CD133+ cells are more interactive with and responsive to their stromal microenvironment because they also express the cognate receptors, such as CXCR4, for ligands produced by their neighboring carcinoma-associated fibroblasts, such as SDF-1 (stromal-derived growth factor).
CD133+ colon cancer cells are more interactive with the tumor microenvironment than CD133- cells.
Specimen part, Disease, Disease stage
View SamplesGATA6 is a transcription factor involved in the differentiation of intestinal epithelial cells into differentiated absorptive epithelial cells.
GATA factors regulate proliferation, differentiation, and gene expression in small intestine of mature mice.
Specimen part, Treatment
View SamplesH929 human myeloma cells were exposed to aminopeptidase inhibitor (CHR-2797), HDAC inhibitor (CHR-3996), or a combinaion of the two agents, for 24 hours.
The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway.
Specimen part, Cell line, Treatment
View Samples-myosin heavy chain promoter controlled MerCreMer expression enables conditional, cardiomyocyte specific and tamoxifen dependent gene inactivation of floxed genes. Administration of tamoxifen has been linked to development of acute and transient cardiomyopathy. The mechanism for this is unknown.
Cre-loxP DNA recombination is possible with only minimal unspecific transcriptional changes and without cardiomyopathy in Tg(alphaMHC-MerCreMer) mice.
Sex, Specimen part, Time
View SamplesCortical tubers in patients with tuberous sclerosis complex (TSC) are associated with cognitive disability and intractable epilepsy. While these developmental malformations are believed to result from the effects of TSC1 or TSC2 Gene mutations, the molecular mechanisms leading to tuber formation during brain development as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform as a genome-wide strategy to define the Gene expression profile of cortical tubers resected during epilepsy surgery compared to histologically normal perituberal tissue (adjacent to the cortical tuber) from the same patients or autopsy control tissue.
Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors.
Specimen part, Disease, Subject
View SamplesThe heart adapts to increased workload through hypertrophic growth of cardiomyocytes. Although beneficial when induced physiologically by exercise, pathological cues including hypertension cause reexpression of fetal genes and dysfunctional hypertrophy, with lasting consequences for cardiac health. We hypothesised that these differences are driven by changes in chromatin-encoded cellular memory. We generated genome-wide maps of transcription and of two stable epigenetic marks, H3K9me2 and H3K27me3, specifically in hypertrophied cardiomyocytes, by selectively flow-sorting their nuclei. This demonstrated a pervasive loss of euchromatic H3K9me2 specifically upon pathological but not physiological hypertrophy, derepressing genes associated with pathological hypertrophy. Levels of the H3K9 methyltransferases, G9a and GLP, were correspondingly reduced. Importantly, pharmacological or genetic inactivation of these enzymes was sufficient to induce pathological hypertrophy and the dedifferentiation associated with it. These findings suggest novel therapeutic opportunities by defining an epigenetic state of cardiomyocytes, acquired during maturation, which is required for maintaining cardiac health. Overall design: Examination of 2 different histone modifications and RNA expression in cardiomyocyte nuclei flow-sorted from hypertrophic rat hearts
The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy.
No sample metadata fields
View SamplesCardiomyopathy in type 1 diabetic patients is characterized by early onset diastolic and late onset systolic dysfunction. The mechanism underlying development of diastolic and systolic dysfunction in diabetes remains unknown.
Activation of a novel long-chain free fatty acid generation and export system in mitochondria of diabetic rat hearts.
Age
View Samples