Whereas the cellular basis of the hematopoietic stem cell (HSC) niche in the bone marrow has been characterized, the nature of the fetal liver (FL) niche is not yet elucidated. We show that Nestin+NG2+ pericytes associate with portal vessels, forming a niche promoting HSC expansion. Nestin+NG2+ cells and HSCs scale during development with the fractal branching patterns of portal vessels, tributaries of the umbilical vein. After closure of the umbilical inlet at birth, portal vessels undergo a transition from Neuropilin-1+Ephrin-B2+ artery to EphB4+ vein phenotype, associated with a loss of peri-portal Nestin+NG2+ cells and emigration of HSCs away from portal vessels. These data support a model in which HSCs are titrated against a peri-portal vascular niche with a fractal-like organization enabled by placental circulation. Overall design: Characterization of the transcriptome of fetal liver and adult bone marrow niche using RNA-seq
Fetal liver hematopoietic stem cell niches associate with portal vessels.
Specimen part, Cell line, Subject
View SamplesMalignant progression in cancer has been associated with the emergence of populations of tumor-initiating cells (TIC) endowed with capabilities for unlimited self-renewal, survival under stress and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by the genetic program known as epithelialmesenchymal transition (EMT) may be an essential step in the evolution of neoplastic cells into fully metastatic populations. A widely accepted paradigm is that EMT potentiates tumor cell self-renewal and metastatic behaviour. Here we describe a cellular model in which a clonal population enriched in TIC expresses a genetic program distinct from a second population with traits of stable EMT, and in which both populations cooperate for enhanced local invasiveness and metastasis. Induction of the TIC-enriched population to undergo EMT by several stimuli or by constitutive overexpression of the transcription factor SNAI1 engaged a mesenchymal program while suppressing the CSC program. This suggests that TIC and EMT, contrary to current paradigms, correspond to alternative states. Furthermore, diffusible factors secreted by the population with EMT traits also induced mesenchymal reprogramming of the population enriched in CSCs. Local invasiveness in vitro and lung colonization in vivo of the TIC-enriched population was enhanced by co-injection with the EMT-trait population, and expanded the range of organs to which it metastasized. Thus, in our model, relatively stable TIC and EMT phenotypes reflect alternative genetic programs expressed by distinct clonal populations. We also suggest that dynamic cooperation between tumor subpopulations displaying either TIC or EMT traits may be a general mechanism driving local invasiveness and metastasis.
Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells.
Cell line
View SamplesThe seed coat of black (iRT) soybean with the dominant R allele begins to accumulate cyanic pigments at the transition stage of seed development (300 400 mg fresh seed weight), whereas the brown (irT) nearly-isogenic seed coat with the recessive r allele lacks cyanic pigments at all stages of seed development.
Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes.
Specimen part
View SamplesEstrogen receptor alpha (ESR1) mutations have been identified in hormone therapy resistant breast cancer and primary endometrial cancer. Analyses in breast cancer suggests that mutant ESR1 exhibits estrogen independent activity. In endometrial cancer, ESR1 mutations are associated with worse outcomes and less obesity, however experimental investigation of these mutations has not been performed. Using a unique CRISPR/Cas9 strategy, we introduced the D538G mutation, a common endometrial cancer mutation that alters the ligand binding domain of ESR1, while epitope tagging the endogenous locus. We discovered estrogen-independent mutant ESR1 genomic binding that is significantly altered from wildtype ESR1. The D538G mutation impacted expression, including a large set of non-estrogen regulated genes, and chromatin accessibility, with most affected loci bound by mutant ESR1. Mutant ESR1 is unique from constitutive ESR1 activity as mutant-specific changes are not recapitulated with prolonged estrogen exposure. Overall, D538G mutant ESR1 confers estrogen-independent activity while causing additional regulatory changes in endometrial cancer cells that are distinct from breast cancer cells. Overall design: RNA-seq was used to study the effects of the D538G mutation on gene expression
Estrogen-independent molecular actions of mutant estrogen receptor 1 in endometrial cancer.
Cell line, Treatment, Subject, Time
View SamplesWe report the transcriptome changes that result of the genomic deletion of one or two alleles of an islet-specific long non-coding RNA (Blinc1) in isolated pancreas from e15.5 mouse embryos. Overall design: Pancreas from e15.5 embryos were dissected and total RNA extracted. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq.
βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function.
Specimen part, Subject
View SamplesBackground: In multiple sclerosis (MS), immune up-regulation is coupled to subnormal immune response to interferon-β (IFN-β) and low serum IFN-β levels. The relationship between the defect in IFN signalling and acute and long-term effects of IFN-β on gene expression in MS is inadequately understood. Methods: We profiled IFN-β-induced transcriptome shifts, using high-resolution microarrays on 227 mononuclear cell samples from IFN-β-treated MS Complete Responders (CR) stable for five years, and stable and active Partial Responders (PR), stable and active untreated MS, and healthy controls. Findings: IFN-β injection induced short-term changes in 1,200 genes compared to baseline expression after 4-day IFN washout. Pre-injection after washout, and in response to IFN-β injections, PR more frequently had abnormal gene expression than CR. Surprisingly, short-term IFN-β induced little shift in Th1/Th17/Th2 gene expression, but up-regulated immune-inhibitory genes (ILT, IDO1, PD-L1). Expression of 8,800 genes was dysregulated n therapy-naïve compared to IFN-β-treated patients. These long-term changes in protein-coding and long non-coding RNAs affect immunity, synaptic transmission, and CNS cell survival, and correct the disordered therapy-naïve transcriptome to near-normal. In keeping with its impact on clinical course and brain repair in MS, long-term IFN-β treatment reversed the overexpression of proinflammatory and MMP genes, while enhancing genes involved in the oligodendroglia-protective integrated stress response, neuroprotection, and immunoregulation. In the rectified long-term signature, 277 transcripts differed between stable PR and CR patients.
Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection.
Age, Specimen part
View SamplesThe acute response four hours after a fat load of extra virgin olive oil was investigated using DNA microarrays. Hepatic gene expression was analysed in Wistar Rats.
Postprandial transcriptome associated with virgin olive oil intake in rat liver.
Sex, Age, Specimen part
View SamplesThe hypothesis that the oleanolic acid of olive oil might influence hepatic gene expression in an apoE was tested in mice.
Dietary oleanolic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.
Specimen part
View SamplesTo investgate the role of EBF1 in human adipocyte, we performed global expression profiling in human adipocytes transfected with siRNA targeting EBF1.
Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.
Specimen part
View Samples