Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia, share the same pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of the malignant disease. We studied the relationship of different protein domains of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal domain of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal domain resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the most N-terminal domain. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active domains. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.
Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.
Specimen part
View SamplesTotal bone marrow (BM) from miR-223 knockout (mir-223-/-) and wildtype (miR-223+/+) mice 21 was extracted, prestimulated for 2 days. Then, the BM cells were simultaneously cotransduced with MSCV-Hoxa9-pgk-neomycin and a MSCV-Meis1-IRES-YFP by co-cultivation with irradiated (4,000 cGy) viral producers. HoxA9-Meis1 transduced cells were sorted for YFP expression and continuously selected with neomycin (1.4 mg/ml).
Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells.
No sample metadata fields
View SamplesThe molecular mechanism defining susceptibility of normal cells to oncogenic transformation may be a valuable therapeutic target. We characterized the cell of origin and its critical pathways in MN1 leukemias. Common myeloid (CMP), but not granulocyte-macrophage progenitors (CMP) could be transformed by constitutively overexpressed MN1. Complementation studies of CMP-signature genes in GMPs demonstrated that leukemogenicity of MN1 required the MEIS1/abdB-like HOX protein complex. Colocalization studies by ChIP-seq identified common chromatin targets of MN1 and MEIS1 that were associated with open chromatin and transcriptional activation. Transcriptional repression of MEIS1 target sites in established MN1 leukemias had antileukemic activity. As MN1 relies on but can not activate expression of MEIS1/abdB-like HOX proteins, transcriptional activity of these genes determines which cell is the cell of origin in MN1 leukemia.
Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex.
Specimen part
View SamplesEffect of the cytokinin BA on wt and arr1,10,12 mutant seedlings
Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development.
Age, Specimen part
View SamplesCharacterization of gene expression changes in HuH7 HCC cells upon treatment with the Jumonji KDM inhibitor, JIB-04, GSK-J4 and SD-70. Overall design: Comparison of gene expression changes between HuH7 cells treated with JIB-04, GSK-J4 or SD-70 vs. DMSO
A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets.
Sex, Age, Treatment, Race, Subject
View SamplesThe host immune response against an infection requires the coordinated action of many diverse cell subsets that dynamically adapt to the pathogen threat. Here we combined WGCNA and DCQ to analyse time-resolved mouse splenic transcriptomes in acute and chronic LCMV infections. This approach allowed to better characterize the dynamic cell events occurring in complex tissues such as the induction of the adaptive T cell response which requires the coordination of monocytes/macrophages and CD8+ T cells. Overall design: mRNA profiles of CD8 T cells and macrophages (in duplicate days 0 and 7 post-infection) from C57BL/6 mice infected with 2x10E2 pfu of LCMV strain Docile, generated by deep sequencing.
Linking Cell Dynamics With Gene Coexpression Networks to Characterize Key Events in Chronic Virus Infections.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hypothalamic food intake regulation in a cancer-cachectic mouse model.
Sex, Specimen part, Treatment
View SamplesAppetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.
Hypothalamic food intake regulation in a cancer-cachectic mouse model.
Sex, Specimen part, Treatment
View SamplesAppetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.
Hypothalamic food intake regulation in a cancer-cachectic mouse model.
Sex, Specimen part, Treatment
View SamplesThe processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus - immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. We found first, an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase. Overall design: mRNA profiles of spleens (in duplicate, days 0, 3, 5, 6, 7, 9 and 31 post-infection) and macrophages (in triplicate, day 6 post-infection) from C57BL/6 mice infected with 2x10E2 (acute) or 2x10E6 (chronic) pfu of LCMV strain Docile, generated by deep sequencing.
Systems analysis reveals complex biological processes during virus infection fate decisions.
No sample metadata fields
View Samples