EKLF is a Krppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf -/-) mice die at day 14.5 of gestation from severe anemia. In this study, we demonstrate that early progenitor cells fail to undergo terminal erythroid differention in Eklf -/- embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis, transcriptional profiling was performed with RNA from wild type and Eklf -/- early erythroid progenitor cells. These analyses identified significant perturbation of a network of genes involved in cell cycle regulation, with the critical regulator of the cell cycle, E2f2, at a hub. E2f2 mRNA and protein levels were markedly decreased in Eklf -/- early erythroid progenitor cells, which showed a delay in the G1-to-S-phase transition. Chromatin immunoprecipitation analysis demonstrated EKLF occupancy at the proximal E2f2 promoter in vivo. Consistent with the role of EKLF as a chromatin modifier, EKLF binding-sites in the E2f2 promoter were located in a region of EKLF-dependent DNase I sensitivity in early erythroid progenitor cells. We propose a model in which EKLF-dependent activation and modification of the E2f2 locus is required for cell cycle progression preceding terminal erythroid differentiation.
Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.
Age, Specimen part
View SamplesTo investigate downstream targets of PRRX1, we used MDA-MB-231 (MDA231) breast cancer cells which express low level of PRRX1 to generate a stable cell line where human PRRX1 was ectopically overexpressed
A gene regulatory network to control EMT programs in development and disease.
Specimen part
View SamplesTo understand which genes acts downstream AtHB1 affecting hypocotyl growth in Arabidopsis thaliana, we performed transcriptional profiles of 4-day-old seedlings grown in a short-day regime comparing wild-type with athb1-1 mutant plants. These results show that some of the AtHB1-regulated genes modulate cell elongation, particularly cell wall composition and elongation, or encode proteins that serve as a source of carbon, nitrogen, and sulfur for early seedling growth. Overall design: RNA-Seq data for 4-day-old wild-type (Col-0) and athb1-1 mutant seedlings grown under short-day conditions. Biological triplicates were performed for each genotype analyzed.
Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation.
Subject
View SamplesTo understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.
Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.
Age, Specimen part
View SamplesBoron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We used microarrays to detail the global gene expression underlying boron toxicity in roots.
A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.
Specimen part, Treatment
View SamplesWe demonstrate that the versatile environmental bacterium Pseudomonas aeruginosa adapts a virulence phenotype after serial passage in Galleria mellonella as an invertebrate model host. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under non-inducing rich medium conditions. Transcriptional reprogramming seemed to be induced by a host-specific food source as reprogramming was also observed upon cultivation of P. aeruginosa in medium supplemented with polyunsaturated long-chain fatty acids. Methods : mRNA profiles were generated for Pseudomonas aerugionsa samples derived from LB-cultures grown to an OD600 =2. The removal of ribosomal RNA was performed using the Ribo-Zero Bacteria Kit (Illumina) and cDNA libraries were generated with the ScriptSeq v2 Kit (Illumina) . The samples were sequenced in single end mode on an Illumina HiSeq 2500 device and mRNA reads were trimmed and mapped to the NC_008463.1 (PA14) reference genome from NCBI using Stampy pipeline with defaut settings. Overall design: Isolate CH2658 was subjected to in vivo and in vitro evolution experiments in this study. This isolate was obtained from the lab of G. Gastmeier, Charite Berlin, Germany. The in vivo passages (using G. mellonella) are named CH2658 I-IV corresponding to passages 1 4. The last passage CH2658 IV corresponds to the “evolved strain” and was passaged in LB (four days, two passages a day) to generate revertants which are referred to as CH2658 Rev1-4 corresponding to samples from day1-4. The last passage CH2658 Rev4 is called “revertant”. Additionally, the clinical isolate was passaged under in vitro conditions in the presence of linolenic acid (Roth) with (CH2658 Lil+P) and without paraffin (CH2658 Lil). As controls, CH2658 was passaged in LB (CH2658 LB) and in LB supplemented with paraffin (CH2658 LB+P). The in vitro passage experiment was conducted for four days and two passages a day.
Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host.
Subject
View SamplesPeripheral blood neutrophils were isolated from septic patients and treated in vitro with LPS or HMGB1
HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury.
No sample metadata fields
View SamplesBackground: Global DNA methylation contributes to genomic integrity by supressing repeat associated transposition events. Several chromatin factors are required in addition to DNA methyltransferases to maintain DNA methylation at intergenic and satellite repeats. Embryos lacking Lsh, a member of the SNF2 superfamily of chromatin helicases, are hypomethylated. The interaction of Lsh with the de novo methyltransferase, Dnmt3b, facilitates the deposition of DNA methylation at stem cell genes. We wished to determine if a similar targeting mechanism operates to maintain DNA methylation at repetitive sequences. Results: We used HELP-seq to map genome wide DNA methylation patterns in Lsh-/- and Dnmt3b-/- somatic cells. DNA methylation is predominantly lost from specific genomic repeats in Lsh-/- cells: LTR-retrotransposons, LINE-1 repeats and mouse satellites. RNA-seq experiments demonstrate that specific IAP (Intracisternal A-type particle) LTRs and satellites, but not LINE-1 elements, are aberrantly transcribed inLsh-/- cells. LTR hypomethylation in Dnmt3b-/- cells is moderate and hypomethylated repetitive elements (IAP, LINE-1 and satellite) are silent. Chromatin immunoprecipitation (ChIP) indicates that repressed LINE-1 elements gain H3K4me3, but H3K9me3 levels are unaltered in Lsh-/- cells, indicating that DNA hypomethylation alone is not permissive for their transcriptional activation. Mis-expressed IAPs and satellites lose H3K9me3 and gain H3K4me3 in Lsh-/- cells. Conclusions: Our study emphasizes that regulation of repetitive elements by DNA methylation is selective and context dependent. We propose a model where Lsh is specifically required at a precise developmental window to target de novo methylation to repeat sequences, which is subsequently maintained by Dnmt1 in somatic cells to enforce repeat silencing thus contributing to genomic integrity. Overall design: Two pairs of RNA samples compared: WT and Lsh-/- RNA isolations from tail-tip fibroblasts; WT and Lsh-/- RNA isolations from E13.5 mouse embryos.
Lsh regulates LTR retrotransposon repression independently of Dnmt3b function.
No sample metadata fields
View SamplesPurpose: The phosphoinositide 3-kinase (PI3K) pathway is fundamental for cell proliferation and survival and is frequently altered and activated in neoplasia, including carcinomas of the lung. In this study we investigated the potential of targeting the catalytic class IA PI3K isoforms in small cell lung cancer (SCLC), which is the most aggressive of all lung cancer types. Experimental Design: The expression of PI3K isoforms in patient specimens was analyzed. The effects on SCLC cell survival and downstream signaling were determined following PI3K isoform inhibition by selective inhibitors or down-regulation by small interfering RNA. Results: Over-expression of the PI3K isoforms p110 and p110 was shown by immunohistochemistry in primary SCLC tissue samples. Targeting the PI3K p110 with RNA interference (RNAi) or selective pharmacological inhibitors resulted in strongly affected cell proliferation of SCLC cells in vitro and in vivo, while targeting p110 was less effective. Inhibition of p110 also resulted in increased apoptosis and autophagy, which was accompanied by decreased phosphorylation of Akt and components of the mammalian target of rapamycin (mTOR) pathway, such as the ribosomal S6 protein, and the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). A DNA microarray analysis revealed that p110 inhibition profoundly affected the balance of pro- and anti-apoptotic Bcl-2 family proteins. Finally, p110 inhibition led to impaired SCLC tumor formation and vascularization in vivo. Conclusion: Together our data demonstrate the key involvement of the PI3K isoform p110 in multiple tumor-promoting processes in SCLC.
Targeting the phosphoinositide 3-kinase p110-α isoform impairs cell proliferation, survival, and tumor growth in small cell lung cancer.
Cell line, Treatment
View SamplesSoluble VEGFR-1 (sVEGFR-1) acts both as a decoy receptor for VEGFs and as an extracellular matrix protein for 51 integrin. A sVEGFR-1-derived peptide that interacts with 51 integrin promotes angiogenesis. However, canonical signal downstream integrin activation is not induced, resulting into lack of focal adhesion maturation. We performed a gene expression profile of endothelial cells adhering on sVEGFR-1 compared to that of cells adhering on fibronectin, the principal 51 integrin ligand. Three protein kinase-C substrates, adducin, MARCKS, and radixin were differently modulated. Adducin and MARCKS were less phosphorylated whereas radixin was higher phosphorylated in sVEGFR-1 adhering cells, the latter leading to prolonged small GTPase Rac1 activation and induction of a pathway involving the heterotrimeric G protein 13. Altogether, our data indicated endothelial cell acquisition of an highly motile phenotype when adherent on sVEGFR-1. Finally, we indicated radixin as accountable for the angiogenic effect of 51 integrin interaction with sVEGFR-1 that in turn depends on an active VEGF-A/VEGFR-2 signaling.
Endothelial cell adhesion to soluble vascular endothelial growth factor receptor-1 triggers a cell dynamic and angiogenic phenotype.
Specimen part
View Samples