Comparative microarray-based transcriptome analysis of A. thaliana mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program.
Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis <i>mlo2 mlo6 mlo12</i> Triple Mutant.
Specimen part, Treatment
View SamplesThe response of cells to hypoxia is characterised by co-ordinated regulation of many genes. Studies of the regulation of the expression of many of these genes by oxygen has implicated a role for the heterodimeric transcription factor hypoxia inducible factor (HIF). The mechanism of oxygen sensing which controls this heterodimeric factor is via oxygen dependent prolyl and asparaginyl hydroxylation by specific 2-oxoglutarate dependent dioxygenases (PHD1, PHD2, PHD3 and FIH-1). Whilst HIF appears to have a major role in hypoxic regulation of gene expression, it is unclear to what extent other transcriptional mechanisms are also involved in the response to hypoxia. The extent to which 2-oxoglutarate dependent dioxygenases are responsible for the oxygen sensing mechanism in HIF-independent hypoxic gene regulation is also unclear. Both the prolyl and asparaginyl hydroxylases can be inhibited by dimethyloxalylglycine (DMOG). Such inhibition can produce activation of the HIF system with enhanced transcription of target genes and might have a role in the therapy of ischaemic disease. We have examined the extent to which the HIF system contributes to the regulation of gene expression by hypoxia, to what extent 2-oxoglutarate dependent dioxygenase inhibitor can mimic the hypoxic response and the nature of the global transcriptional response to hypoxia. We have utilised microarray assays of mRNA abundance to examine the gene expression changes in response to hypoxia and to DMOG. We demonstrate a large number of hypoxically regulated genes, both known and novel, and find a surprisingly high level of mimicry of the hypoxic response by use of the 2-oxoglutarate dependent dioxygenase inhibitor, dimethyloxalylglycine. We have also used microarray analysis of cells treated with small interfering RNA (siRNA) targeting HIF-1alpha and HIF-2alpha to demonstrate the differing contributions of each transcription factor to the transcriptional response to hypoxia. Candidate transcripts were confirmed using an independent microarray platform and real-time PCR. The results emphasise the critical role of the HIF system in the hypoxic response, whilst indicating the dominance of HIF-1alpha and defining genes that only respond to HIF-2alpha.
Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways.
No sample metadata fields
View SamplesGene expression profiles of rescue with wild type or SUMO double mutant TRIM24 after shRNA mediated knockdown of TRIM24 in MCF7 cell line Overall design: Gene expression profiles of rescue with wild type TRIM24 and SUMO double mutant, 3 replicate each
Cross-talk between chromatin acetylation and SUMOylation of tripartite motif-containing protein 24 (TRIM24) impacts cell adhesion.
No sample metadata fields
View SamplesSystemic sclerosis (SSc) or scleroderma is a chronic multiorgan autoimmune disease of unknown etiology characterized by vascular, immunological and fibrotic abnormalities. Several lines of evidence have shown that the endocannabinoid system (ECS) may play a role in the pathophysiology of SSc. VCE-004.8, a CBD aminoquinone derivative, is a dual PPAR?/CB2 that alleviates bleomycin (BLM)-induced skin fibrosis. Herein we report that EHP-101, an oral lipidic formulation of VCE-004.8, prevents skin and lung fibrosis and collagen accumulation in BLM challenged mice. Immunohistochemistry analysis of the skin demonstrate that EHP-101 prevents macrophage infiltration, and the expression of Tenascin C (TNC), VCAM, and the a-smooth muscle actin (SMA). In addition, a reduced expression of vascular CD31, paralleling skin fibrosis, was also prevented by EHP-101. RNAseq analysis in skin biopsies showed a clear effect of EHP-101 in the inflammatory and epithelial-mesenchymal transition transcriptomic signatures. TGF-beta regulated genes such as matrix metalloproteinase-3 (Mmp3), cytochrome b-245 heavy chain (Cybb), lymphocyte antigen 6E (Ly6e), vascular cell adhesion molecule-1 (Vcam1) and the Integrin alpha-5 (Itga5) were induced in BLM mice and repressed by EHP-101 treatment. We also intersected differentially expressed genes in EHP-101-treated mice with dataset of human scleroderma intrinsic genes and found 53 overlapped genes, including the C-C motif chemokine 2 (Ccl2) and the interleukin 13 receptor subunit alpha 1 (IL-13Ra1) genes, which have been studied as biomarkers of SSc. Altogether the results indicate that this synthetic cannabinoid qualifies as a novel compound for the management and possible treatment of scleroderma and, potentially, other fibrotic diseases. Overall design: RNA-Seq profiles were generated for six- to eight-week-old female BALB/c mice in three conditions: Control, Bleomycin and Bleomycin + EHP-101 treatment (N=2).
EHP-101, an oral formulation of the cannabidiol aminoquinone VCE-004.8, alleviates bleomycin-induced skin and lung fibrosis.
Specimen part, Cell line, Subject
View SamplesSeveral lines of evidence have shown that the endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Thereby, structurally different dual PPAR?/CB2 agonists such as VCE-004.8 and Ajulemic acid (AjA) have been shown to alleviate skin fibrosis and inflammation in experimental models of SSc. Since both compounds are currently being tested in humans, we were interested to identify similarities and differences in a murine model of SSc. One method available to assess this is the pharmacotranscriptomic signature of the individual compounds. To analyze the pharmacotranscriptomic signature, we used RNA-Seq to analyze the skin gene expression changes from bleomycin-induced fibrosis in mice treated orally with either AjA or EHP-101, a lipidic formulation of VCE-004.8. While both compounds prevented the upregulation of a common group of genes involved in the inflammatory and fibrotic components of the disease and the pharmacotranscriptomic signatures were similar for both compounds in some pathways, we found key differences between the compounds in several functional groups, including genes related the hypoxia, interferon-a and interferon-? response. Additionally, we found 28 specific genes with translation potential by comparing our results with a list of intrinsic human scleroderma genes. Inmunohistochemical analysis revealed that both EHP-101 and AjA prevented bleomycin-induced skin fibrosis, collagen accumulation, and TNC and VCAM expression. However, only EHP-101 normalized the reduced expression of vascular CD31, CD34 and Von Willebrand factor markers, which parallels skin fibrosis, while AjA did not affect these markers. Finally, clear differences were also found in the plasmatic biomarker analysis, in which we found that EHP-101, but not AjA, enhanced the expression of some factors related to angiogenesis and vasculogenesis. Altogether the results indicate that dual PPAR?/CB2 agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases as well, and that EHP-101 has unique mechanisms of action related to the pathophysiology of SSc which could be beneficial in treatment of this complex disease with no current therapeutic options. Overall design: RNA-Seq profiles were generated for six- to eight-week-old female BALB/c mice in four conditions: Control, Bleomycin, Bleomycin + EHP-101 treatment and Bleomycin + Ajulemic acid treatment. Please note that the "raw_counts_newsamples.txt" includes raw counts obtained from featureCounts for the samples included in this entry and the "raw_counts_merged.txt" includes raw counts obtained from merging the counts of the samples from this entry with the counts of the samples from the GSE115503 entry.
Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for systemic sclerosis.
Specimen part, Cell line, Subject
View SamplesThe overall cellular response to oxidative stress generated by Ero1 in the lumen of the mammalian endoplasmic reticulum (ER) is poorly characterized. Here, we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1.
Hyperactivity of the Ero1α oxidase elicits endoplasmic reticulum stress but no broad antioxidant response.
No sample metadata fields
View SamplesMiR-1246 was found to promote tumorigenesis and metastasis in sevearl cancer types. In the context of tumor microenvironment, tumor-associated macrophages are a central part typically correlated with poor prognosis.
Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246.
Specimen part
View SamplesTo determine how aging impacts gene expression in hematopoietic stem cells (HSCs), human CD34+ cells from bone marrow (34BM) and mobilized stem cell products (34P38NPBSC) were examined using microarray-based expression profiling. Differential expression changes were confirmed by microarray comparisons of younger and older expanded T-cell populations.
Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells.
No sample metadata fields
View SamplesMouse LT-HSC were sorted and cultured in mScf, mTpo, mFlt3L, hIGFBP2 and Angptl5 for 2 days. These expression values were related to insertions of gamma-retroviral, lentiviral or alpharetroviral vectors carrying GFP which were retrieved after serial murine BM transplantation. The relation between gene expression in the cells responsible for long-term hematopoiesis and location of vector integration was investigated.
Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity.
Specimen part
View SamplesMALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-B pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-B target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-B target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. Finally, expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-B activation in vitro. Our findings provide novel insights into the molecular mechanism of MALT lymphomas with and without translocation, potentially explaining their different clinical behaviors.
Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism.
No sample metadata fields
View Samples