Effect of injury and Pseudomonas aeruginosa inoculation in Drosophila melanogaster
Involvement of skeletal muscle gene regulatory network in susceptibility to wound infection following trauma.
Sex, Time
View SamplesWe carried out a global whole blood genome wide expression profiling of HIV exposed and uninfected women from Nairobi to identify host factors which may be a key contribution to HIV resistance phenomenon.
Microarray analysis of HIV resistant female sex workers reveal a gene expression signature pattern reminiscent of a lowered immune activation state.
Specimen part
View SamplesDyskeratosis congenita is a bone marrow failure syndrome characterized by the presence of short telomeres at presentation. The X-linked form is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for in the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, suggesting induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we show that in iPS cells with DKC1 mutations Q31E, A353V and L37 telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin varies, with recurrent mutation A353V showing the most severe effect on telomere maintenance. A353V cells but not Q31E or L37 cells, are refractory to correction by incorporation of a single copy of a wild type DKC1 cDNA into the AAVS1 safe harbor locus. None of the mutant cells show decreased pseudouridine levels in rRNA or defective rRNA processing. Finally transcriptome analysis of the iPS cells shows that WNT signaling is significantly decreased in all mutant cells, raising the possibility that defective WNT signaling may contribute to disease pathogenesis.
Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.
Specimen part
View SamplesMicroenvironment is known to influence cancer drug response and sustain resistance to therapies targeting receptor-tyrosine kinases. However if and how tumor microenvironment can be altered during treatment, contributing to resistance onset is not known. Here we show that, under prolonged treatment with tyrosine kinase inhibitors (TKIs), EGFR- or MET-addicted cancer cells displayed a metabolic shift towards increased glycolysis and lactate production. We identified secreted lactate as the key molecule able to instruct Cancer Associated Fibroblasts (CAFs) to produce Hepatocyte Growth Factor (HGF) in a NF-KB dependent manner. Increased HGF, activating MET-dependent signaling in cancer cells, sustained resistance to TKIs. Functional targeting or pharmacological inhibition of lactate dehydrogenase prevented and overcame in vivo resistance, demonstrating the crucial role of this metabolite in the adaptive process. This non-cell-autonomous, adaptive resistance mechanism was observed in NSCLC patients progressed on EGFR TKIs, demonstrating the clinical relevance of our findings and opening novel scenarios in the challenge to drug resistance Overall design: RNA-seq analysis of 2 different samples, each one with 2 biological replicates (4 sequencing runs in total).
Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies.
Specimen part, Subject
View SamplesThe STOX1 transcription factor has been involved in a complex human disease of pregnancy, preeclampsia, in human families, and mouse models. However, its mode of action is still largely unknown. Overexpression of either the long (STOX1A) or the short (STOX1B) isoform was obtained in the BeWo villous trophoblast model, a cell line able to fuse in syncytiotrophoblast following induction by forskolin treatment. The effects at the transcriptional level are evaluated in every condition.
Molecular Mechanisms of Trophoblast Dysfunction Mediated by Imbalance between STOX1 Isoforms.
Cell line, Treatment
View Samples