Poly(A) enriched RNA derived from the L5 DRG 7 days following L5-SNT and from naïve L5-DRG tissue was subjected to RNA-seq analysis at different sequencing depths Overall design: 6 biological replicates (3 case – SNT subjected L5-DRG tissue, 3 control – naïve L5-DRG tissue). Each biological replicate was divided B46into 3 technical replicates; each of the technical replicates for a given sample was sequenced to a depth of 17M, 25M or 50M reads. Reads were single stranded and 34bps in length. Multiplexing was used in order to generate the read depths of different sizes. The gene expression values and fold changes in expression between naive and SNT samples were compared to those generated by a microarray experiment carried out on further technical replicates of the same samples, details in the manuscript (submitted - under revision).
A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat.
No sample metadata fields
View SamplesSalt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. Upon osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared to euhydrated (EU) controls in terms of drinking and eating behaviour, body weight and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL
A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.
Specimen part, Cell line
View SamplesTo study the effect of miR-130a in prostate cancer, PC3 cells overexpressing miR-130a were analyzed for global gene expression.
Epigenetic disruption of miR-130a promotes prostate cancer by targeting SEC23B and DEPDC1.
Cell line
View SamplesThe colorectal cancer (CRC) cell line pair SW480/SW620 is an accepted model to study CRC progression and metastasis formation. Studying gene expression differences might allow to uncover molecular mechanisms that underlie metastasis initiation
The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.
Specimen part, Cell line
View SamplesThis study investigated possible molecular changes in the oral mucosa of head and neck squamous cell carcinoma patients submitted to chemoradiotherapy with and without low-level laser therapy by cDNA microarray analysis.
cDNA microarray analysis of human keratinocytes cells of patients submitted to chemoradiotherapy and oral photobiomodulation therapy: pilot study.
Specimen part, Disease, Disease stage
View SamplesWhile the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less understood. By dissecting border regions and combining single-cell RNA sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny and subsets displayed distinct self-renewal capacities upon depletion and repopulation. Single-cell and fate-mapping analysis both suggested there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in the healthy and diseased brain. Overall design: sample of WT choroid plexus, sample of WT dura mater, sample of WT enriched SDM, sample of WT whole brain, sample of 9 months old APP/PS1 mice, sample of 16 months old APP/PS1 mice, sample of 16 months old WT mice, sample of Irf8 KO whole brain, sample of Irf8 KO choroid plexus, sample of Irf8 WT whole brain, sample of Irf8 WT choroid plexus, sample of dura mater with standard protocol and with ActD protocol, sample of choroid plexus with standard protocol and ActD protocol.
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.
Specimen part, Cell line, Subject
View SamplesTuberculosis (TB) is responsible for the majority of mortality and morbidity associated with infectious diseases worldwide. The characterization of exact molecular components of immune response associated with protection against TB may help design more effective therapeutic interventions. In this study, we aimed to characterize the immune signature of memory T cells associated with latent infection with Mycobacterium tuberculosis. Transcriptomic profiling using RNA sequencing was performed on memory CD4 and CD8 T cells isolated from individuals with latent tuberculosis, as well as from tuberculosis negative healthy controls. Overall, we found specific gene signatures in each cell subset that could successfully discriminate between individuals with latent tuberculosis and healthy controls. Overall design: RNA-sequencing of sorted memory CD4 and CD8 T cells from cryopreserved PBMC of 10 subjects with latent tuberculosis infection and 10 tuberculosis negative healthy controls
Circulating T cell-monocyte complexes are markers of immune perturbations.
Disease, Disease stage, Subject
View SamplesWe develop a theoretical-computational framework for inferring cell state transition dynamics, and apply it to mouse embryonic stem cells states defined by expression levels of Esrrb, Tbx3, and Zscan4. RNA-seq was performed to characterize the larger transcriptional differences between states expressing combinations of these three specific genes, and proceed to explore their dynamic interconversion. Overall design: A double knock-in reporter for Esrrb and Tbx3 with distinct fluorescent proteins was constructed to enable purification of substates defined by their relative expression levels (Esrrb-/Tbx3-; Esrrb+/Tbx3-; Esrrb+/Tbx3+). A second line was constructed using a promoter-fragment reporter to isolate Zscan4+ from Zscan4- cells. Following FACS isolation, the subpopulations were sequenced on an Illumina HiSeq2500. Biological replicates were collected on different days.
Inferring Cell-State Transition Dynamics from Lineage Trees and Endpoint Single-Cell Measurements.
Specimen part, Subject
View SamplesThese data consist of an expression survey of three receptor cell lines and the parental cell types was performed to determine expression of BMP related genes. Overall design: Sequence libraries for three cell types were constructed using NEBNext Ultra RNA-seq (NEB #E7530) and sequenced on Illumnia HiSeq2500.
Combinatorial Signal Perception in the BMP Pathway.
Cell line, Subject
View Samples