This SuperSeries is composed of the SubSeries listed below.
Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.
Specimen part, Cell line
View SamplesCHARGE syndrome is a congenital disorder caused by mutations in Chromodomain Helicase DNA-binding domain 7 (CHD7) gene. We performed single cell RNA-seq analysis in CTRL and CHD7-knockdown lt-NES cells. Overall design: Single cell RNA-Seq profiling of control (shCTRL) and CHD7-knockdown (sh410 or sh411) cells.
Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.
Specimen part, Cell line, Subject
View SamplesWe performed a microarray experiment to analyze the transcriptional profile of human iPSC-derived neural stem/progenitor cells to identify CHD7 target genes
Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling.
Specimen part, Subject
View SamplesIn this study we determine the transcriptional profile by microarray of iPSCs and iPSC-derived neurospheres generated from T-cells or aHDF by using direct neurosphere method.
Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling.
Specimen part, Subject
View SamplesIn order to test the hypothesis that fibroblasts from different tissues are phenotypically distinct from one another, we have subjected tendon, skin and corneal fibroblasts of fetal mouse to mechanical stimulation by fluid flow and analyzed the transcriptional responses of the cells using Affymetrix MOE430 chip set containing two arrays MOE430A and MOE430B.
Phenotypic responses to mechanical stress in fibroblasts from tendon, cornea and skin.
No sample metadata fields
View SamplesRecent clinical data suggest that the efficacy of statin treatment in patients with heart failure varies depending on the drugs administered. Therefore, the present study was undertaken to compare murine cardiac gene expression following treatment with four different statins.
Comparative effects of statins on murine cardiac gene expression profiles in normal mice.
Sex, Specimen part
View SamplesSaccharomyces cerevisiae is exposed to freeze-thaw stress in commercial processes including frozen dough baking. The cell viability and fermentation activity after freeze-thaw were dramatically decreased due to freeze-thaw injury. Because freeze-thaw injury involves complex phenomena, the mechanisms of it are not fully understood. We attempted to analyze the mechanisms of freeze-thaw injury by indirect gene expression analysis during post-thaw incubation after freeze-thaw treatment using DNA microarray profiling. The results showed that a high frequency of the genes involved in the homeostasis of metal ions were up-regulated depending on the freezing period. The phenotype of the deletion mutants of the up-regulated genes extracted by indirect gene expression analysis was assessed. The deletion strains of the MAC1 and CTR1 genes involved in copper ion homeostasis exhibited freeze-thaw sensitivity, suggesting that copper ion homeostasis is required for freeze-thaw tolerance. Supplementation with copper ions during post-thaw incubation increased intracellular superoxide dismutase activity. Inverse correlated with intracellular superoxide dismutase activity, intracellular levels of reactive oxygen species were decreased. Moreover, cell viability increased by supplementation with copper ions under specific assessment conditions. This study suggested that insufficiency of copper ion homeostasis may be one of the causes of freeze-thaw injury.
Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.
No sample metadata fields
View SamplesGenes whose expression correlated to the degree of thermotolerance in S. cerevisiae were identified by DNA microarray analysis.
Identification of a gene, FMP21, whose expression levels are involved in thermotolerance in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesRecent research hints at an underappreciated complexity in pre-miRNA processing and regulation. Global profiling of pre-miRNA and its potential to increase understanding of the pre-miRNA landscape is impeded by overlap with highly-expressed classes of other non-coding RNA. Here we present a dataset excluding these RNA before sequencing through locked nucleic acids (LNA), greatly increasing pre-miRNA sequence counts with no discernable effects on pre-miRNA or mature miRNA sequencing. Analysis of profiles generated in total, nuclear, and cytoplasmic cell fractions reveals pre-miRNAs are subject to a wide range of regulatory processes involving loci-specific 3'- and 5'-end variation entailing complex cleavage patterns with co-occurring polyuridylation. Additionally, examination of nuclear-enriched flanking sequences of pre-miRNA, particularly those derived from polycistronic miRNA transcripts, provides insight into miRNA and miRNA-offset (moRNA) production. Our findings point to particularly intricate regulation of the let-7 family, introduce novel and unify known forms of pre-miRNA regulation and processing, and shed new light on the byproducts of miRNA processing pathways. none provided
pre-miRNA profiles obtained through application of locked nucleic acids and deep sequencing reveals complex 5'/3' arm variation including concomitant cleavage and polyuridylation patterns.
No sample metadata fields
View Samples