Abnormal mitochondria metabolism and innate immune responses participate in the pathogenesis of many inflammatory disorders. The molecular events regulating mitochondrial activity to control survival and cell death in monocytes/macrophages are poorly understood. Here we show that miR-125b attenuates the activity of the mitochondrial respiratory chain through BIK silencing, and promotes the elongation of mitochondrial network through MTP18 targeting, without impacting autophagy, in the human monocytes. Proinflammatory activation is associated with a concomitant increase in miR-125b expression, decrease in BIK and MTP-18 expression, reduced oxidative phosphorylation, and enhanced mitochondrial fusion. Furthermore, expression of M1-associated transcripts as well as mitochondrial dynamics and energy metabolism are induced upon ectopic expression of miR-125b. In turn, by repressing miR-125b, mitochondrial dynamics was preserved, LPS-induced repression of BIK expression and of mitochondrial respiration were prevented, and M1 polarization of macrophages was inhibited. Altogether, our data reveal a novel role for miR-125b in controlling mitochondrial metabolism and dynamics by targeting BIK and MTP18, respectively, two novel cellular target proteins involved in maintaining the mitochondrial integrity in human monocytes. These findings not only suggest a novel function for miR-125b in regulating metabolic adaptation of monocytes to inflammation but also unravel new molecular mechanisms for its pro-apoptotic role and identify potential targets for interfering with inflammatory activation of monocytes.
miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics.
Specimen part, Cell line
View SamplesThe translation of novel pulmonary fibrosis therapies from preclinical models into the clinic represents a major challenge demonstrated by the high attrition rate of compounds that showed efficacy in preclinical models but demonstrated no significant beneficial effects in clinical trials. Precision-cut lung tissue slice (PCLS) contains all major cell types of the lung and preserves the original cell-cell and cell-matrix contacts. It represents a promising ex vivo model to study pulmonary fibrosis. In this study, using RNA sequencing, we demonstrated that TGFß1 induced robust fibrotic responses in the rat PCLS model as it changed the expression of genes functionally related to extracellular matrix remodeling, cell adhesion, epithelial-to-mesenchymal transition and various immune responses. Nintedanib, pirfenidone and sorafenib each reversed a subset of genes modulated by TGFß1 and of those genes we identified 229 genes whose expression was reversed by all three drugs. These genes define a molecular signature characterizing many aspects of pulmonary fibrosis pathology and its attenuation in the rat PCLS fibrosis model. A panel of 12 genes and 3 secreted biomarkers including procollagen I, HA and WISP1 were validated as efficacy endpoints for the evaluation of anti-fibrotic activity of experimental compounds. Finally, we showed that blockade of aV integrins suppressed TGFß1-induced fibrotic responses in the rat PCLS fibrosis model. Overall, our results suggest that the TGFß1-induced rat PCLS fibrosis model may represent a valuable system for target validation and to determine the efficacy of experimental compounds. Overall design: TGFb-treated rat precision-cut lung tissue slices (PCLS) were treated with drug and profiled with RNA-Seq
Molecular characterization of a precision-cut rat lung slice model for the evaluation of antifibrotic drugs.
Specimen part, Subject
View SamplesPrecision-cut liver tissue slice (PCLS) contains all major cell types of the liver parenchyma and preserves the original cell-cell and cell-matrix contacts. It represents a promising ex vivo model to study liver fibrosis and test the anti-fibrotic effect of experimental compounds in a physiologic environment. In this study using RNAquencing we demonstrated that various pathways functionally related to fibrotic mechanisms were dysregulated in PCLSs derived from rats subjected to bile duct ligation. The Alk5 inhibitor SB525334, nintedanib and sorafenib each reversed a subset of genes dysregulated in fibrotic PCLSs and of those genes we identified 608 genes whose expression was reversed by all three compounds. These genes define a molecular signature characterizing many aspects of liver fibrosis pathology and its attenuation in the model. A panel of 12 genes and 4 secreted biomarkers including procollagen I, HA, IGFBP5 and WISP1, were further validated as efficacy endpoints for the evaluation of anti-fibrotic activity of experimental compounds. Finally, we showed that blockade of aV integrins with a small molecule inhibitor attenuated the fibrotic phenotype in the model. Overall, our results suggest that the rat fibrotic PCLS model may represent a valuable system for target validation and to determine the efficacy of experimental compounds. Overall design: Precision-cut liver tissue slices (PCLS) from BDL rats were treated with drug and profiled with RNA-Seq
Molecular characterization of a precision-cut rat liver slice model for the evaluation of antifibrotic compounds.
Specimen part, Subject
View SamplesCoffinLowry Syndrome (CLS) is a syndromic form of mental retardation caused by loss of function mutations in the X-linked RPS6KA3 gene, which encodes Rsk2, a serine/threonine kinase involved in spatial memory. We analyzed hippocampal gene expression profiles in Rsk2-KO mice to identify changes in molecular pathways.
Transcriptome profile reveals AMPA receptor dysfunction in the hippocampus of the Rsk2-knockout mice, an animal model of Coffin-Lowry syndrome.
No sample metadata fields
View SamplesGenome-wide transcriptome analyses have allowed for systems- level insights into gene regulatory networks. Due to the limited depth of quantitative proteomics, however, our understanding of post-transcriptional gene regulation and its effects on protein complex stoichiometry are lagging behind. Here, we employ deep sequencing and iTRAQ technology to determine transcript and protein expression changes of a Drosophila brain tumour model at near genome-wide resolution. In total, we quantify more than 6,200 tissue-specific proteins, corresponding to about 70% of all transcribed protein-coding genes. Using our integrated data set, we demonstrate that post-transcriptional gene regulation varies considerably with biological function and is surprisingly high for genes regulating transcription. We combine our quantitative data with protein-protein interaction data and show that post-transcriptional mechanisms significantly enhance co-regulation of protein complex subunits beyond transcriptional co-regulation. Interestingly, our results suggest that only about 11% of the annotated Drosophila protein complexes are co-regulated in the brain. Finally, we refine the composition of some of these core protein complexes by analysing the co-regulation of potential subunits. Our comprehensive transcriptome and proteome data provide a rich resource for quantitative biology and offer novel insights into understanding post- transcriptional gene regulation in a tumour model. Overall design: Transcriptomes of 1-3 day old adult female Drosophila melanogaster heads of control and brat mutant were generated by deep sequencing, in triplicate, using Illumina GAIIx.
Transcriptome and proteome quantification of a tumor model provides novel insights into post-transcriptional gene regulation.
Subject
View SamplesBacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. Overall design: High-resolution comparative Dual RNA-seq time-course
Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions.
No sample metadata fields
View SamplesBacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. Overall design: Dual RNA-seq of further sRNA mutants
Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions.
No sample metadata fields
View SamplesBacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. Overall design: Comparative Dual RNA-seq in pig macropahges
Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions.
Subject
View SamplesBacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. Overall design: Pilot Dual RNA-seq: Infection of HeLa-S3 cells with wild-type Salmonella; 2 time points (4 h, 24 h p.i.; each sorted into invaded host cells [GFP+] and non-infected bystanders [GFP-]) and the respective human (4 h mock, 24 h mock) or bacterial reference controls (0 h LB, 0 h input), respectively. Three biological replicates were taken.
Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions.
No sample metadata fields
View SamplesAccumulated evidences suggest physiological relevance between the transcription factor NRF3 (NFE2L3) and cancers. However NRF3 target genes in cancer cells remain poorly understood.
Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation.
Specimen part, Cell line
View Samples