CK1-alpha-LS was knocked down in human coronary artery smooth muscle cells. Gene level and exon level changes in expression were assessed.
Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia.
Specimen part
View SamplesBasal-like breast cancer (BLBC) cells share phenotypic similarities with cancer stem cells (CSCs) but the underlying molecular basis for this connection remains elusive. We hypothesized that BLBC cells are able to establish a niche permissive to the maintenance of CSCs and found that tumor cell-derived periostin (POSTN), a component of the extracellular matrix, as well as a corresponding cognate receptor, integrin v3, are highly expressed in a subset of BLBC cell lines as well as in cancer stem cell-enriched populations. Furthermore, we demonstrated that an intact periostin-integrin 3 signaling axis is required for the maintenance of breast CSCs. POSTN activates the ERK signaling pathway and regulates NF-B-mediated transcription of key cytokines, namely IL6 and IL8, which in turn mediate downstream activation of STAT3. In summary, these findings suggest that BLBC cells have an innate ability to establish a microenvironmental niche supportive of CSCs.
Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells.
Cell line
View SamplesNascent transcription profiles are shown for scaled megadomains and 100kb flanking regions before BRD4-NUT induction (0h) and at different time points (2h, 3h, 7h) following induction in 293T cells. Increase of the transcription from 0h to 7h after induction. Average level of transcriptional activity is reduced within the megadomains and their flanking regions following JQ1 treatment of TC-797 cells. Profile of nascent RNA-seq is shown for cells without JQ1 treatment, and for cells 1hr, 2.5hr and 4hr following JQ1 treatment. Overall design: Recovery and analysis of nascent RNA
The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.
Sex, Specimen part
View SamplesWe examined molecular responses using transcriptome profiling in isolated left ventricular murine cardiomyocytes to 90 cGy, 1 GeV proton (1H) and 15 cGy, 1 GeV/nucleon (n) iron (56Fe) particles 1, 3, 7, 14 and 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the radiation (IR) response, and time after exposure with 56Fe-IR showing the greatest level of gene modulation. 1H-IR exposures showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Individual transcription factors were inferred to be active at 1, 3, 7, 14 and 28 days after exposure. Validation of the signal transduction network by protein analysis showed that particle IR clearly regulates a long lived signaling mechanism for p38 MAPK signaling and NFATc4 activation. Electrophoresis mobility shift assays supported the role of additional key transcription factors GATA-4, STAT-3 and NF-B as regulators of the response at specific time points. These data suggest that the molecular response to 56Fe-IR is unique and shows long-lasting gene expression in cardiomyocytes, up to 28 days after exposure. Additionally, proteins involved in signal transduction and transcriptional activation via DNA binding play a role in the response to high charge (Z) and energy (E) particles (HZE). Our study may have implications for NASAs efforts to develop heart disease risk estimates for astronauts safety via identification of specific HZE-IR molecular markers and for patients receiving conventional and particle radiotherapy.
Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.
Sex, Specimen part
View SamplesIn this study, we took advantage of a previously established breast cancer progression cell line model system, which consists of a parental MCF10A (MI) spontaneously immortalized mammary epithelial cell line and two of its derivatives: 1) MCF10ATk.cl2 (MII), a MCF10A H-Ras transformed cell line and 3) MCF10CA1h (MIII), derived from a xenograft of the MII cells in nude mice that progressed to carcinoma (1, 2). These cell lines were previously reported to exhibit distinct tumorigenic properties when re-implanted in nude mice; MI is non-tumorigenic, MII forms benign hyperplastic lesions and MIII forms low-grade, well differentiated carcinomas (2, 3). The advantage of this system is that these cell lines were derived from a common genetic background (MCF10A) and accumulated distinct genetic/epigenetic alterations in vivo enabling them to acquire a range of non-tumorigenic to carcinogenic properties. Our initial studies showed that MIII cells, but not MI or MII, exhibit an EMT phenotype, promoter DNA hypermethylation of epithelial genes and highly invasive properties in vitro.
Smad signaling is required to maintain epigenetic silencing during breast cancer progression.
Cell line
View SamplesmRNA expression was assayed from bronchial epithelial cells collected via bronchoscopy and nasal epithelial cells collected by brushing the inferior turbinate from healthy current and never smoker volunteers in order to determine the relationship between smoking-related gene expression changes in bronchial and nasal epithelium within the same individual.
Similarities and differences between smoking-related gene expression in nasal and bronchial epithelium.
Sex, Age, Specimen part, Race
View SamplesIntroduction: In the recently completed Dutch GLUCOLD study, treatment of COPD patients with fluticasone salmeterol reduced the rate of decline in FEV1. These results indicate that ICS can have therapeutic efficacy in COPD. Aim: To explore the molecular mechanisms by which ICS exert their effects, we performed genome-wide gene expression profiling on bronchial biopsies from COPD patients who participated in the GLUCOLD study. Methods: An Affymetrix Human Gene Array ST version 1.0 was performed in a total of 221 bronchial biopsies that were available from 90 COPD patients at baseline and after 6 and 30 months of therapy. Linear mixed effects modeling was used to analyze treatment-specific changes in gene expression. A validation set was included and pathway analysis was performed with Gene Set Enrichment Analysis (GSEA). Results: The expression of 138 genes significantly decreased after both 6 and 30 months of treatment with fluticasone salmeterol versus placebo, whereas the expression of 140 genes increased. A more pronounced treatment-induced change in expression of 51 of these 278 genes was associated with a slower rate of decline in FEV1. Genes that decreased with treatment were involved in pathways related to cell cycle, oxidative phosphorylation, epithelial cell signaling, p53 signaling and T cell signaling. Genes that increased with treatment were involved in pathways related to focal adhesion, gap junction and extracellular matrix deposition. Conclusion: The present study suggests that gene expression in biological pathways of COPD is dynamic with treatment and reflects disease activity. This study opens the gate to targeted and phenotype-driven therapy of COPD.
Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity.
Age
View SamplesThe goal of this study was to define gene expression profiles in aortic tissue in response to three pro-atherogenic stimuli at two time points. We identified gene expression profiles induced by oral P.gingivalis (Pg), intranasal C. pneumoniae (Cp), and Western diet (WD) at acute (1 day after last infection, Pg, Cp, and control groups) and chronic (9 weeks after last infection, Pg, Cp, and control groups; WD for 9 weeks) time points in aortas of Apolipoprotein E (Apoe-/-) mice. 3 replicates per group were analyzed. RNA was analyzed using Mouse Gene 1.0 ST Array (Affymetrix, Santa Clara, CA).
Distinct gene signatures in aortic tissue from ApoE-/- mice exposed to pathogens or Western diet.
Specimen part, Treatment, Time
View SamplesExposure to indoor air pollution generated from the combustion of solid fuels is a major risk factor for a spectrum of cardiovascular and respiratory diseases, including lung cancer. In Chinas rural counties of Xuanwei and Fuyuan, lung cancer rates are among the highest in the country. While the elevated disease risk in this population has been linked to the widespread usage of bituminous (smoky) coal as compared to anthracite (smokeless) coal, the underlying physiologic mechanism that smoky coal induces in comparison to other fuel types is unclear. As we have previously used airway gene-expression profiling to gain molecular insights into the physiologic effects of cigarette smoke, here we profiled the buccal epithelium of residents exposed to the burning of smoky and smokeless coal in order to understand the physiologic effects of solid fuels.
Gene-expression profiling of buccal epithelium among non-smoking women exposed to household air pollution from smoky coal.
Sex, Age, Specimen part
View Samples