Objective: Systemic lupus erythematosus (SLE) has substantial unmet medical need and its pathogenesis is incompletely understood. This study characterized baseline gene expression and pharmacodynamic (PD)-induced changes in whole blood gene expression from two phase III, 52-week (W), randomized, placebo-controlled, double-blind studies of 1,760 SLE patients treated with the B cell activating factor (BAFF)-blocking IgG4 monoclonal antibody, tabalumab. Methods: Patient samples were obtained from ILLUMINATE-1 and -2 while control samples were from healthy donors. Blood was collected in TempusTM tubes at baseline, W16 and W52. RNA was analyzed using the Affymetrix Human Transcriptome Array 2.0 and NanoStringTM. Results: At baseline there was elevation of interferon responsive genes (IRG) in patients compared to controls, with 75% positive for this IRG signature. There was, however, substantial heterogeneity of IRG expression and complex relationships among gene networks. The interferon signature was a predictor of future time to flare, independent of anti-double stranded DNA antibody (dsDNA), C3 and C4 levels, and overall disease activity. PD changes in gene expression following tabalumab treatment were extensive, occurring predominantly in B cell-related and immunoglobulin (Ig) genes, and were consistent with other PD-induced changes including dsDNA, C3, and Ig levels. Conclusions: SLE patients demonstrated elevated expression of an IRG signature, detected in 75% of the patients at baseline in ILLUMINATE-1 and -2. There was substantial heterogeneity of gene expression detected among individual patients and in gene networks. The interferon signature was an independent risk factor for future flares. PD changes in gene expression were consistent with the mechanism of BAFF blockade by tabalumab.
Gene Expression and Pharmacodynamic Changes in 1,760 Systemic Lupus Erythematosus Patients From Two Phase III Trials of BAFF Blockade With Tabalumab.
Sex, Specimen part, Race, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene Expression and Pharmacodynamic Changes in 1,760 Systemic Lupus Erythematosus Patients From Two Phase III Trials of BAFF Blockade With Tabalumab.
Sex, Specimen part, Race, Subject, Time
View SamplesObjective: Systemic lupus erythematosus (SLE) has substantial unmet medical need and its pathogenesis is incompletely understood. This study characterized baseline gene expression and pharmacodynamic (PD)-induced changes in whole blood gene expression from two phase III, 52-week (W), randomized, placebo-controlled, double-blind studies of 1,760 SLE patients treated with the B cell activating factor (BAFF)-blocking IgG4 monoclonal antibody, tabalumab. Methods: Patient samples were obtained from ILLUMINATE-1 and -2 while control samples were from healthy donors. Blood was collected in TempusTM tubes at baseline, W16 and W52. RNA was analyzed using the Affymetrix Human Transcriptome Array 2.0 and NanoStringTM. Results: At baseline there was elevation of interferon responsive genes (IRG) in patients compared to controls, with 75% positive for this IRG signature. There was, however, substantial heterogeneity of IRG expression and complex relationships among gene networks. The interferon signature was a predictor of future time to flare, independent of anti-double stranded DNA antibody (dsDNA), C3 and C4 levels, and overall disease activity. PD changes in gene expression following tabalumab treatment were extensive, occurring predominantly in B cell-related and immunoglobulin (Ig) genes, and were consistent with other PD-induced changes including dsDNA, C3, and Ig levels. Conclusions: SLE patients demonstrated elevated expression of an IRG signature, detected in 75% of the patients at baseline in ILLUMINATE-1 and -2. There was substantial heterogeneity of gene expression detected among individual patients and in gene networks. The interferon signature was an independent risk factor for future flares. PD changes in gene expression were consistent with the mechanism of BAFF blockade by tabalumab.
Gene Expression and Pharmacodynamic Changes in 1,760 Systemic Lupus Erythematosus Patients From Two Phase III Trials of BAFF Blockade With Tabalumab.
Sex, Specimen part, Race, Subject, Time
View SamplesObjective: Systemic lupus erythematosus (SLE) has substantial unmet medical need and its pathogenesis is incompletely understood. This study characterized baseline gene expression and pharmacodynamic (PD)-induced changes in whole blood gene expression from two phase III, 52-week (W), randomized, placebo-controlled, double-blind studies of 1,760 SLE patients treated with the B cell activating factor (BAFF)-blocking IgG4 monoclonal antibody, tabalumab. Methods: Patient samples were obtained from ILLUMINATE-1 and -2 while control samples were from healthy donors. Blood was collected in TempusTM tubes at baseline, W16 and W52. RNA was analyzed using the Affymetrix Human Transcriptome Array 2.0 and NanoStringTM. Results: At baseline there was elevation of interferon responsive genes (IRG) in patients compared to controls, with 75% positive for this IRG signature. There was, however, substantial heterogeneity of IRG expression and complex relationships among gene networks. The interferon signature was a predictor of future time to flare, independent of anti-double stranded DNA antibody (dsDNA), C3 and C4 levels, and overall disease activity. PD changes in gene expression following tabalumab treatment were extensive, occurring predominantly in B cell-related and immunoglobulin (Ig) genes, and were consistent with other PD-induced changes including dsDNA, C3, and Ig levels. Conclusions: SLE patients demonstrated elevated expression of an IRG signature, detected in 75% of the patients at baseline in ILLUMINATE-1 and -2. There was substantial heterogeneity of gene expression detected among individual patients and in gene networks. The interferon signature was an independent risk factor for future flares. PD changes in gene expression were consistent with the mechanism of BAFF blockade by tabalumab.
Gene Expression and Pharmacodynamic Changes in 1,760 Systemic Lupus Erythematosus Patients From Two Phase III Trials of BAFF Blockade With Tabalumab.
Sex, Specimen part, Race, Subject, Time
View SamplesWe used microarrays to investigate gene expression changes induced by the inhibition of RRAS2 expression using shRNA techniques to stably knockdown the endogenous transcripts of this GTPase in human MDA-MB-231-Luc cells.
Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease.
Cell line
View SamplesCutaneous squamous tumors rely on autocrine/paracrine loops for proper fitness. Targeting this Achilles heel is therefore considered a potential avenue for patient treatment. However, the mechanisms that engage and sustain such programs during tumor ontogeny are poorly understood. Here, we show that two Rho/Rac activators, the exchange factors Vav2 and Vav3, control the expression of an epithelial autocrine/paracrine program that regulates keratinocyte survival and proliferation as well as the creation of an inflammatory microenvironment. Vav proteins are also critically involved in some of the subsequent autocrine signaling loops activated in keratinocytes. The genetic inactivation of both Vav proteins reduces tumor multiplicity without hampering skin homeostasis, thus suggesting that pan-specific Vav therapies may be useful in skin tumor prevention and treatment.
The Rho exchange factors Vav2 and Vav3 favor skin tumor initiation and promotion by engaging extracellular signaling loops.
Specimen part
View SamplesUpon antigen recognition within peripheral lymphoid organs, B cells interact with T cells and other immune cells to transiently form morphological structures called germinal centers (GCs), which are required for B cells clonal expansion, immunoglobulin class switching, and affinity maturation. This process, known as the GC response, is an energetically demanding process that requires metabolic reprogramming of B cells. Here, we showed that the Ras-related guanosine triphosphate hydrolase (GTPase) R-Ras2 (also known as TC21) plays an essential, nonredundant, and B cellintrinsic role in the GC response. Both the conversion of B cells into GC B cells and their expansion were impaired in mice lacking R-Ras2, but not in those lacking a highly-related R-Ras subfamily member or both the classic H-Ras and N-Ras GTPases. In the absence of R-Ras2, activated B cells did not increase oxidative phosphorylation or aerobic glycolysis. We showed that R-Ras2 was an effector of both the B cell receptor (BCR) and CD40 and that, in its absence, B cells exhibited impaired activation of the PI3K-Akt-mTORC1 pathway, reduced mitochondrial DNA replication, and decreased expression of genes involved in glucose metabolism. Because most human B cell lymphomas originate from GC B cells or B cells that have undergone the GC response, our data suggests that R-Ras2 may also regulate metabolism in B cell malignancies.
R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes.
Specimen part
View SamplesF4/80+ macrophages treated with TGFb2 are potently tolerogenic. Our understanding of the molecular mechanisms mediating the development of these tolerogenic properties is incomplete.
FcγRI is required for TGFβ2-treated macrophage-induced tolerance.
Sex, Specimen part, Treatment
View SamplesIn vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection
In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection.
Sex, Age, Specimen part
View SamplesThe most recurrently mutated oncogene in T-cell acute lymphoblastic leukemia (T-ALL) is NOTCH1. The core Notch complex consists of an ICN protein, a Maml cofactor, and the DNA binding factor Rbpj. The known direct cofactors of Notch appear to act nonselectively, homogeneously driving Notch gene expression functions. It is unclear whether there are direct cofactors of Notch that act selectively and heterogeneously regulate ICN. We discovered that Zmiz1, a Protein Inhibitor of Activated STAT (PIAS)-like coactivator, directly bound ICN1. ChIP-Seq showed that Zmiz1 selectively co-bound only a subset of Notch-regulated enhancers. This led to hypothesize that Zmiz1 regulates only a subset of Notch1 target genes. To investigate this, we performed RNA-Seq on four 8946 cell linesin which L1601P (activated Notch1) or Zmiz1 were expressed alone or in combination. Zmiz1 induced ~10% of Notch target genes. The Notch target gene that was most strongly induced by Zmiz1 was Myc. Our data suggest that Zmiz1 selectively amplifies a subset of Notch target genes with strong amplification of Myc. Overall design: RNA-Seq in a murine T-ALL cell line
The PIAS-like Coactivator Zmiz1 Is a Direct and Selective Cofactor of Notch1 in T Cell Development and Leukemia.
No sample metadata fields
View Samples