Cytokine signaling is transmitted by cell surface receptors which function as natural biological switches to control among others mainly immune related processes. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of GFP- and mCherry-nanobodies fused to trans-membrane and intracellular domains of cytokine receptors, which phenocopied cytokine signaling induced by non-physiological homo- and heterodimeric GFP-mCherry ligands. Interleukin 22 signals via IL-22Rα1 and the common IL-10R2, belongs to the IL-10 cytokine family and is critically involved in tissue regeneration. IL-22 SyCyRs phenocopied native IL-22 signal transduction as shown by induction of cytokine-dependent cellular proliferation, signal transduction and transcriptome analysis. Whereas homodimeric IL-22Rα1 SyCyRs failed to activate signaling, homodimerization of the second IL-22 signaling chain, SyCyR(IL-10R2), which was considered to not induce signal transduction, lead to induction of signal transduction. Interestingly, the SyCyR(IL-10R2) and SyCyR(IL-22Rα1) were able to form functional heterodimeric receptor signaling complexes with the synthetic IL-6 receptor chain SyCyR(gp130). In summary, we demonstrated that IL-22 signaling can be phenocopied by synthetic cytokine receptors. Further we identified a novel IL-10R2 homodimeric receptor complex and receptor cross-talk with gp130.
Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130.
Specimen part, Treatment
View SamplesIn vitro studies identified TBC1D4 as an regulator of renal ion and water transporting proteins. However, TBC1D4-deficient mice did not show a defective renal salt and water homeostasis.
Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney.
Sex, Specimen part
View SamplesMuscle contraction during exercise is the major stimulus for the release of peptides and proteins (myokines) that are supposed to take part in the benefical adaptation to exercise. We hypothesize that application of an in vitro exercise stimulus as electric pulse stimulation (EPS) to human myotubes enables the investigation of the human muscle secretome in a clearly defined model. We applied EPS for 24 h to primary human myotubes and studied the whole genome-wide transcriptional response and as well as the release of candidate myokines. We observed 183 differentially regulated transcripts with fold-changes > 1.3. The transcriptional response resembles several properties of the in vivo situation in the skeletal muscle after endurance exercise, namely significant enrichment of pathways associated with interleukin and chemokine signaling, lipid metabolism, and anti-oxidant defense; notably without increased release of creatin kinase.
Cytokine response of primary human myotubes in an in vitro exercise model.
Sex, Specimen part, Subject
View SamplesPurpose: MetS consist of five risk factors: elevated blood pressure and fasting glucose, visceral obesity, dyslipidemia and hypercholesterinemia. The physiological impact of lipid metabolism indicated as visceral obesity and hepatic lipid accumulation is still under debate. One major cause of disturbed lipid metabolism might be dysfunction of cellular organelles controlling energy homeostasis, i.e. mitochondria and peroxisomes.
Alteration of Liver Peroxisomal and Mitochondrial Functionality in the NZO Mouse Model of Metabolic Syndrome.
Sex, Age, Specimen part
View SamplesCytokine-induced signal transduction is executed by natural biological switches, which among many others control immune related processes. To construct a biological device, that simulates cytokine signaling, we utilized nanobodies to generate synthetic cytokine receptors (SyCyR). High affinity GFP- and mCherry-nanobodies were selected and extracellularly fused to trans-membrane and intracellular domains of IL-23 cytokine receptors. Soluble homo- and heterodimeric GFP:mCherry fusion proteins served as SyCyR ligands. Heterodimeric GFP-mCherry and homodimeric GFP fusion proteins efficiently phenocopied IL-23 signal transduction, respectively, as demonstrated by STAT3-, ERK- and Akt-activation, SOCS3 expression and transcriptome profiling. Interestingly, the homodimeric GFP fusion protein induced IL-23 receptor homo-dimerization and activation of IL-23-like signal transduction
Synthetic cytokine receptors transmit biological signals using artificial ligands.
Specimen part, Cell line
View SamplesBackground and aim: The Insulin-like growth factor (IGF) axis is increasingly suggested to be involved in fatty liver disease and progression. We identified IGFBP2 as transcriptional regulatory effect network in liver steatosis and conducted a translational approach of its role in liver pathology from mouse to human, and whether it is influenced by conventional clinical intervention that mitigate hepatic steatosis. Methods: Primary hepatocytes from either C57Bl6 controls, alb-SREBP-1c mice with moderate transgene induced hepatic lipid accumulation or aP2-SREBP-1c mice with massive ectopic hepatic lipid accumulation, were analyzed to identify regulatory networks based on differentially regulated hepatic gene expression. In a translational approach, serum of morbidly obese patients with and without diabetes and biopsy-proven NAFLD were used for ELISA-based validation of mouse data. Moreover, sera of patients undergoing intervention were analyzed and correlated to liver fat content. Results: Comparative knowledge-based transcriptome analysis identified IGFBP2 as top score regulatory effect network between moderate and aggravated fatty liver in mouse models. The reduced expression of IGFBP2 in aP2-SREPB-1c progressed fatty liver associated with Igfbp2 promoter hypermethylation. Reduced secretion of IGFBP2 from aP2-SREBP-1c hepatocytes was reflected in the circulation of the animals. In this phenotype, reductions of IGFBP2 were accompanied by reduced fatty acid oxidation and increased methyltransferase and SIRT activity. Physiologically, IGFBP2 has no direct impact on lipid metabolism but might modulate IGF1 action on de novo lipogenesis. In humans, IGFBP2 levels declined from non-obese men to morbidly obese men with NAFLD and NASH. In intervention study reductions in liver fat correlated with restoration of IGFBP2 serum levels to values found in healthy individuals in morbidly obese patients following bariatric surgery. Conclusion: In hepatic metabolism changes of IGFBP2 abundance is connected to lipid metabolism whereas changes in IGFBP2 secretion were directly reflected in the circulation. IGFBP2 serum concentration correlates with the degree of fatty liver, which seems to be related to plasticity of the adipose tissue. These data provide IGFBP2 as a potential non-invasive biomarker for fatty liver disease directly reflecting the degree of impaired liver function with the potential to indicate progressed fatty liver disease.
Physiological Disturbance in Fatty Liver Energy Metabolism Converges on IGFBP2 Abundance and Regulation in Mice and Men.
Sex, Age
View SamplesThe Skeletal muscle is a metabolic active tissue that secretes various proteins. These so called myokines act auto-, para- and endocrine affecting muscle physiology and exert systemic effects on other tissues and organs. Myokines are also described to play a crucial role in the pathophysiology of metabolic diseases.
Secretome profiling of primary human skeletal muscle cells.
Sex, Specimen part, Subject
View SamplesExperiment: Establishment of expression profiles in a brain metastasis from a PTC (RNA processing and hybridization to Affymetrix microarray done twice to yield a technical replicate), in non-brain metastatic, stage III and IV PTCs, and primary brain tumors. Biostatistics analysis identified genes and biofunctions related to the brain metastatic PTC.
Microarray expression profiling identifies genes, including cytokines, and biofunctions, as diapedesis, associated with a brain metastasis from a papillary thyroid carcinoma.
Sex, Disease stage
View SamplesLineage negativ Sca1+ Kit+ bone marrow cells (containing putative hematopoietic stem cells) subfractionation based on CD34 and FLT3 identifies three functionally destinc subpopulations (LSKCD34-FLT3-, LSKCD34+FLT3- & LSKCD34+FLT3+).
Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors.
No sample metadata fields
View SamplesExperiment: Establishment of expression profiles in HT, PTC with HT, PTC without HT, and mPTC in comparison to TN samples. TN samples were downloaded as CEL files from the repository of the microarray vendor. Biostatistical analysis focussed in first instance on identifying genes and biofunctions related to HT and PTC with HT.
Genetic relationship between Hashimoto`s thyroiditis and papillary thyroid carcinoma with coexisting Hashimoto`s thyroiditis.
Sex, Disease
View Samples