This SuperSeries is composed of the SubSeries listed below.
Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma.
Cell line
View SamplesLittle is known about the epigenomics of liposarcoma (LPS). Here, we profiled the global expression of 9 epigenetic marks in well differentiated (WD) and dedifferentiated (DD) LPS from 151 patients and found increased H3K9me3 among DDLPS tumors. We performed ChIP-seqand gene expression profiling of patient derived cell lines to discover functionally significant regions of differential H3K9me3 enrichment between WDLPS and DDLPS associated with concomitant gene expression changes.
Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma.
Cell line
View SamplesReduced eukaryotic Initiation Factor 2 (eIF2)a phosphorylation (p-eIF2a) enhances protein synthesis, memory formation, and addiction-like behaviors. However, p-eIF2a has not been examined with regard to psychoactive cannabinoids and cross-sensitization. Here, we find that a cannabinoid receptor agonist (WIN 55,212-2 mesylate [WIN]) reduced p-eIF2a in vitro by upregulating GADD34 (PPP1R15A), the recruiter of protein phosphatase 1 (PP1). The induction of GADD34 was linked to ERK/CREB signaling and to CREB-binding protein (CBP)-mediated histone hyperacetylation at the Gadd34 locus. In vitro, WIN also upregulated eIF2B1, an eIF2 activator subunit. We next found that WIN administration in vivo reduced p-eIF2a in the nucleus accumbens of adolescent, but not adult, rats. By contrast, WIN increased dorsal striatal levels of eIF2B1 and ?FosB among both adolescents and adults. In addition, we found cross-sensitization between WIN and cocaine only among adolescents. These findings show that cannabinoids can modulate eukaryotic initiation factors, and they suggest a possible link between p-eIF2a and the gateway drug properties of psychoactive cannabinoids. Overall design: RNAseq from PC12 cell line with a 6 hour DMSO or WIN treatment.
Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2α and eIF2B1) and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats.
No sample metadata fields
View SamplesWe investigated the ability of transferrin receptor1 (TfRc) knockout cells to populate different domains of the developing kidney by using a chimeric approach. The TfRc cells developed into all segments of the developing nephron, but there was a relative exclusion from the ureteric bud and a positive bias towards the stromal compartment. Here we conducted a microarray analysis of differential gene expression between TfRc deficient and wild type (wt) cells in chimeric embryonic kidneys derived from embryos created by blastocyst injection of wt blastocysts with TfRc-/- green fluorescent protein-expressing (GFP+) embryonic stem cells.
Scara5 is a ferritin receptor mediating non-transferrin iron delivery.
No sample metadata fields
View SamplesThe gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.
Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.
Specimen part
View SamplesBACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.
A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.
Specimen part
View SamplesTo characterize how symbiotic bacteria affect the lolecular and cellular mechanisms of epithelial homeostasis, human colonic Caco-2 cells
Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.
No sample metadata fields
View SamplesWe sought to find a gene-expression multigene predictor of response to infliximab therapy in Rheumatoid Arthritis patients. Using internal and external cross-validation systems we have built and validated an 8-gene predictor for response to infliximab.
An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis.
Sex, Specimen part, Disease, Disease stage
View SamplesIn order to identify the developmental changes controlling the switch from disease susceptibility to resistance, we performed global gene expression analysis on non-infected and infected intestinal tissues taken from 4-day- and 7-day-old animals.
Maturation of paneth cells induces the refractory state of newborn mice to Shigella infection.
Age
View SamplesPlants have developed complex mechanisms to respond and adapt to abiotic stresses, coupling elaborate modulation of gene expression together with the preservation of genome stability. Epigenetic mechanisms - DNA methylation, chromatin modifications and non coding RNAs - were shown to play a fundamental role in stress-induced gene regulation and may also result in genome destabilization, with the activation and/or the transcription of silenced transposons and retroelements, causing genome rearrangements and novel gene expression patterns. Maize leaf transcriptome was analyzed by total RNA-Seq in both B73 and rmr6 (PolIV mutant involved in siRNA biogenesis and in the RdDM pathway) after drought and salt stress application. Reference annotation based transcript assembly allowed the identification both of new expressed loci and splicing variants, improving the current maize transcriptome annotation. Many antisense transcripts matching on the opposite strand of annotated loci were also identified, while more than the 20% of transcripts represent non coding RNA belonging to four classes: siRNAs, shRNAs, lncRNAs and transposable elements (or their relics). Several lncRNAs are modulated by stress application while TE-related sequences are mainly expressed in rmr6 and up-regulated by the stress. Overall design: Total RNA-Seq analysis of maize leaves from wt and rmr6-1 mutant plants grown under 1) control conditions, 2) drought stress, 3) salt stress, 4) salt+drought stress. Each condition was investigated in triplicate after 10 days of treatment and after 7 days of recovery. Samples derived from replicates 2 and 3 were pooled and sequenced together
Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription.
Treatment, Subject, Time
View Samples