Germline-specific RNA helicase Spindle-E (Spn-E) is known to be essential for piRNA silencing in Drosophila that takes place mainly in the perinuclear nuage granules. Loss-of-function spn-E mutations lead to tandem Stellate genes derepression in the testes and retrotransposon mobilization in the ovaries. However, Spn-E functions in the piRNA pathway are still obscure. Analysis of total library of short RNAs from the testes of spn-E heterozygous flies revealed the presence of abundant piRNA ping-pong pairs originating from Su(Ste) transcripts. The abundance of these ping-pong pairs were sharply reduced in the library from the testes of spn-E mutants. Thus we found that ping-pong mechanism contributed to Su(Ste) piRNA generation in the testes. The lack of Spn-E caused a significant drop of protein levels of key ping-pong participants, Aubergine (Aub) and AGO3 proteins of PIWI subfamily, in the germline of both males and females, but did not disrupt of their assembly in nuage granules. We found that observed decline of the protein expression was not caused by suppression of aub and ago3 transcription as well as total transcription, indicating possible contribution of Spn-E to post-transcriptional regulation. Overall design: The fractions of small RNAs (19-29 nt) from testis of Drosophila melanogaster spnE/+ spnE/- strains were sequenced using Illumina HiSeq 2000.
RNA helicase Spn-E is required to maintain Aub and AGO3 protein levels for piRNA silencing in the germline of Drosophila.
Specimen part, Subject
View SamplesSee "Akula et al., Molecular Psychiatry in Press". RNA-sequencing (RNA-seq) is a powerful technique to investigate the complexity of gene expression in the human brain. We used RNA-seq to survey the brain transcriptome in high-quality post-mortem dorsolateral prefrontal cortex from 11 individuals diagnosed with bipolar disorder (BD) and from 11 age- and gender-matched controls. Deep sequencing was performed, with over 350 million reads per specimen. At a false-discovery rate of <5%, we detected 5 differentially-expressed (DE) genes and 12 DE transcripts, most of which have not been previously implicated in BD. Among these, PROM1/CD133 and ABCG2 play important roles in neuroplasticity. We also show for the first time differential expression of long non-coding RNAs (lncRNAs) in BD. DE transcripts include those of SRSF5 and RFX4, which along with lncRNAs play a role in mammalian circadian rhythms. The DE genes were significantly enriched for several Gene Ontology (GO) categories. Of these, genes involved with GTPase binding were also enriched for BD-associated SNPs from previous genome-wide association studies, suggesting that differential expression of these genes is not simply a consequence of BD or its treatment. Many of these findings were replicated by microarray in an independent sample of 60 cases and controls. These results highlight common pathways for inherited and non-inherited influences on disease risk that may constitute good targets for novel therapies. Overall design: Brain transcriptome in bipolar disorder
RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View SamplesInduced pluripotent stem cells (iPSCs) can be generated by enforced expression of defined transcription factors in somatic cells. It remains controversial whether iPSCs are equivalent to blastocyst-derived embryonic stem cells (ESCs). Using genetically matched cells, we found that the overall mRNA expression patterns of these cell types are indistinguishable with the exception of a few transcripts encoded on chromosome 12qF1.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View SamplesThe mature CNS contains PDGFRA+ oligodendrocyte progenitor cells (OPC) which may remain quiescent, proliferate, or differentiate into oligodendrocytes. In human gliomas, rapidly proliferating Olig2+ cells resembling OPCs are frequently observed. We sought to identify, in vivo, candidate pathways uniquely required for OPC differentiation or quiescence. Using the bacTRAP methodology, we generated and analyzed mouse lines for translational profiling the major cells types (including OPCs), in the normal mouse brain. We then profiled oligodendoglial (Olig2+) cells from a mouse model of Pdgf-driven glioma. This analysis confirmed that Olig2+ tumor cells are most similar to OPCs, yet, it identified differences in key progenitor genes - candidates for promotion of differentiation or quiescence.
Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma.
Specimen part
View SamplesPluripotent cells can be derived from somatic cells by either overexpression of defined transcription factors (resulting in induced pluripotent stem cells (iPSCs)) or by nuclear transfer or cloning (resulting in NT-ESCs). To determine whether cloning further reprograms iPSCs, we used iPSCs as donor cells in nuclear transfer experiments.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View SamplesGene expression of sibling human ES cell lines are more similar to each other than unrelated cell lines.
Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines.
Specimen part
View SamplesThe immense molecular diversity of neurons challenges our ability to deconvolve the relationship between the genetic and the cellular underpinnings of neuropsychiatric disorders. Hypocretin (orexin) containing neurons of the lateral hypothalamus are clearly essential for the normal regulation of sleep and wake behaviors, and have been implicated in feeding, anxiety, depression and reward. However, little is known about the molecular phenotypes of these cells, or the mechanism of their specification. We have generated a Hcrt bacTRAP line for comprehensive translational profiling of these neuronsin vivo. From this profile, we have identified 188 transcripts, as enriched in these neurons, in additions to thousands more moderately enriched or nominally expressed. We validated many of these at the RNA and protein level, including the transcription factor Lhx9. Lhx9 protein is found in a subset of these neurons, and ablation of these gene results in a 30% loss of Hcrt neuron number, and a profound hypersomnolence in mice.This data suggests that Lhx9 may be important for specification of some Hcrt neurons, and the subsets of these neurons may contribute to discrete sleep phenotypes.
Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation.
Sex, Specimen part
View SamplesAnalysis of iPS cells generated with a small molecule, RepSox (RS), as well as a time-course of gene expression changes in cells treated with RS.
A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog.
Specimen part, Cell line
View SamplesPOU5F1 (more commonly known as Oct-4/3) is one of the stem cell markers and affects direction of differentiation in embryonic stem cells. To investigate whether cells of mesenchymal origin acquire embryonic phenotype, we generated a human cell line of mesodermal origin with overexpression of the chimeric POU5F1 gene with physiological co-activator EWS, which is driven by the potent EWS promoter by translocation. The cell line termed Pooh (POU5F1/Oct-4/3 overexpressing human) cells expressed embryonic stem cell genes such as Nanog and also non-translocated POU5F1, lost mesenchymal phenotypes, and exhibited embryonal stem cell-like alveolar structure when implanted into the subcutaneous tissue of immunodeficient mice. Hierarchical analysis by microchip analysis and cell surface analysis revealed that Pooh cells are subcategorized into the group of human embryonic stem cells and embryonal carcinoma cells. These results imply that cells of mesenchymal origin can partially be traced back to cells to embryonic phenotype by the POU5F1 gene in collaboration with the potent cis-regulatory element and the fused co-activator.
Mesenchymal to embryonic incomplete transition of human cells by chimeric OCT4/3 (POU5F1) with physiological co-activator EWS.
No sample metadata fields
View Samples