Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, using Arabidopsis knockout mutants (aln) of ALLANTOINASE, we showed that this purine metabolite activates ABA production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) not only confirmed increased expression of ABA-inducible genes, but also revealed altered expression of genes involved in jasmonic acid (JA) responses, likely under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to hemibiotrophic and necrotrophic pathogens, probably reflecting the antagonistic action of MYC2 on the defense against these bacteria. Exogenously administered allantoin elicited the expression of JA-responsive genes including MYC2 in wild-type plants, supporting that allantoin might be responsible for the observed JA-related aln phenotypes. However, the effect of exogenous allantoin was suppressed by mutations deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3) and deficient in ABA (aba2-1 and bglu18). The suppressive effect of jar1-1 and bglu18 mutations was further confirmed in the aln-1 background (jar1-1/aln-1 and bglu18/aln-1). These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study provides evidence for the possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the importance of allantoin in these interactions.
Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner.
Specimen part
View SamplesSamples were taken from colorectal cancers in surgically resected specimens in 35 colorectal cancer patients. The expression profiles were determined using Affymetrix Human Genome U133 Plus 2.0 arrays. Comparison between the sample groups allow to identify a set of discriminating genes that can be used for molecular markers for CIN phynotype.
Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer.
Specimen part
View SamplesSamples were taken from colorectal cancers in surgically resected specimens in 33 colorectal cancer patients. The expression profiles were determined using Affymetrix Human Genome U133 Plus 2.0 arrays. Comparison between the sample groups allow to identify a set of discriminating genes that can be used for molecular markers for CIN phynotype
Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer.
Specimen part
View SamplesHistone H3 lysine 9 (H3K9) methylation is an epigenetic mark of transcriptionally repressed chromatin. During mammalian development, H3K9 methylation levels seem to be spatiotemporally regulated by the opposing activities of methyltransferases and demethylases to govern correct gene expression. However, the combination(s) of H3K9 methyltransferase(s) and demethylase(s) that contribute to this regulation and the genes regulated by them remain unclear. Herein, we demonstrate the essential roles of H3K9 demethylases Jmjd1a and Jmjd1b in the embryogenesis and viability control of embryonic stem (ES) cells. Mouse embryos lacking Jmjd1a/Jmjd1b died after implantation. Depletion of Jmjd1a/Jmjd1b in mouse ES cells induced rapid cell death accompanied with a massive increase in H3K9 methylation. Jmjd1a/Jmjd1b depletion induced an increase in H3K9 methylation in the gene-rich regions of the chromosomes, indicating that Jmjd1a/Jmjd1b removes H3K9 methylation marks in the euchromatin. Importantly, the additional disruption of the H3K9 methyltransferase G9a in a Jmjd1a/Jmjd1b-deficient background rescued not only the H3K9 hypermethylation phenotype but also the cell death phenotype. We also found that Jmjd1a/Jmjd1b removes H3K9 methylation marks deposited by G9a in the Oct4 and Ccnd1 loci to activate transcription. In conclusion, Jmjd1a/Jmjd1b ensures ES cell viability by antagonizing G9a-mediated H3K9 hypermethylation in the gene-rich euchromatin.
Combined Loss of JMJD1A and JMJD1B Reveals Critical Roles for H3K9 Demethylation in the Maintenance of Embryonic Stem Cells and Early Embryogenesis.
Specimen part
View SamplesA comparative analysis of gene expression of CD4+ EGFP+ Nrp1+ (tTreg, thymus-derived Treg), CD4+ EGFP+ Nrp1- (pTreg, peripherally-derived Treg) and CD4+ EGFP- (Tconv, conventional T cell) in CD28-/- Foxp3EGFP and Foxp3EGFP mice. Overall design: Nrp1+ Treg (tTreg), Nrp1- Treg (pTreg) and Tconv were sorted from Foxp3EGFP and CD28-/-Foxp3EGFP mice. Total RNAs were extracted from whole samples and analyzed by RNA-seq.
CD28 co-stimulation is dispensable for the steady state homeostasis of intestinal regulatory T cells.
Specimen part, Cell line, Subject
View SamplesThe oviducts play a critical role in gamete and embryo transport, as well as supporting fertilization and early embryo development. Progesterone receptor (PGR) is a transcription factor highly expressed in oviductal cells, while its activating ligand, progesterone (P4), surges to peak levels as ovulation approaches. P4 is known to regulate oviduct cilia beating and muscular contractions in vitro, but how PGR may mediate this in vivo is poorly understood. We used PGR-knockout (PRKO) mice to determine how PGR regulates oviductal function during the periovulatory period, in particular oviductal transport and embryo support.
Progesterone receptor-dependent regulation of genes in the oviducts of female mice.
Specimen part
View SamplesAnalysis of the regulation of gene expression profiles by retinoblastoma-1 in Sertoli cells. Conditional knockout of Rb1 in Sertoli cells led to progressive infertiliy in male mice that occured between 10 and 14 weeks of age. Results of gene expression studies performed on 6 week-old purified Sertoli cells helped elucidate the key role of RB1 in mature, differentiated Sertoli cells.
Retinoblastoma protein plays multiple essential roles in the terminal differentiation of Sertoli cells.
Age, Specimen part
View SamplesPlant hormones interact with each other and regulate gene expression to control plant growth and development. To understand the complex network, accumulation of comprehensive and integrative data of gene expression and hormone concentration is important. Using microarray, global gene expression profile was analyzed to compare with plant hormone concentration in 14 parts of rice at reproductive stage.
UniVIO: a multiple omics database with hormonome and transcriptome data from rice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesOvulation requires sequential molecular events and structural remodeling in the ovarian follicle for the successful release of a mature oocyte capable of being fertilised. Critical to this process is progesterone receptor (PGR), a transcription factor highly yet transiently expressed in granulosa cells of preovulatory follicles. Progesterone receptor knockout (PRKO) mice are anovulatory, with a specific and complete defect in follicle rupture. Therefore, this model was used to examine the critical molecular and biochemical mechanisms necessary for successful ovulation.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View Samples