Venous thromboembolism (VTE) is a major cause of morbidity and mortality. Pulmonary embolism is a life threatening manifestation of VTE that occurs in at least half the patients on presentation. In addition, VTE recurs in up to 30% of patients after a standard course of anticoagulation, and there is not a reliable way of predicting recurrence. We investigated whether gene expression profiles of whole blood could distinguish patients with VTE from healthy controls, single VTE from those with recurrence, and DVT alone from those with PE. 70 adults with VTE on warfarin and 63 healthy controls were studied. Patients with antiphospholipid syndrome or cancer were excluded. Blood was collected in PAXgene tubes, RNA isolated, and gene expression profiles obtained using Affymetrix arrays. We developed a 50 gene model that distinguished healthy controls from subjects with VTE with excellent receiver operating characteristics (AUC 0.94; P < 0.0001). We also discovered a separate 50 gene model that distinguished subjects with a single VTE from those with recurrent VTE with good receiver operating characteristics (AUC 0.75; P=0.008). In contrast, we were unable to distinguish subjects with DVT from those with PE using gene expression profiles. Gene expression profiles of whole blood can distinguish subjects with VTE from healthy controls and subjects with a single VTE from those with recurrence. Additional studies should be performed to validate these results and develop diagnostic tests. Gene expression profiling is likely translatable to other thrombotic disorders(e.g., patients with cancer and VTE).
Whole blood gene expression analyses in patients with single versus recurrent venous thromboembolism.
Sex, Age, Race
View SamplesAge-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations
Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations.
No sample metadata fields
View SamplesALS is a uniformly fatal neurodegenerative disease in which motor neurons in the spinal cord and brain stem are selectively lost. Individual motor - groups of motor neurons innervating single muscles - show widely varying degrees of disease resistance: in the final stages of ALS, nearly all voluntary movement is lost but eye movement and eliminative and sexual functions remain relatively unimpaired. These functions are controlled by motor neurons of the oculomotor (III), trochlear (IV) and abducens (VI) nuclei in the midbrain and brainstem, and by Onufs nucleus in the lumbosacral spinal cord, respectively. Correspondingly, in ALS autopsies the oculomotor and Onufs nuclei are almost completely preserved. We used microarray profiling of isolated wildtype mouse motor neurons to identify genes whose expression was characteristic of both oculomotor and Onufs nuclei but not of vulnerable lumbar spinal neurons, or vice versa.
Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.
Sex, Specimen part
View SamplesCellular differentiation is regulated through activation and repression of defined transcription factors. A hallmark of differentiation is a pronounced change in cell shape, which is determined by dynamics of the actin cytoskeleton. In de-differentiated fat (DFAT) cells and 3T3-L1 cells, we showed that treatment with the ROCK inhibitor Y-27632, by inducing remodeling of the actin cytoskelton, causes adipocyte differentiation. In addition, we found that depletion of MKL1, an actin binding transcriptional coactivator, elicits adipogenesis.
Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation.
Specimen part
View SamplesProliferative diabetic retinopathy (PDR) is a vision-threatening disorder characterized by the formation of cicatricial fibrovascular membranes leading to traction retinal detachment. Despite the recent advance in the treatment of PDR such as vitreoretinal surgery with use of anti-vascular endothelial growth factor (VEGF) drug as an adjunct, it still remains vision-threatening disease.
Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy.
Specimen part, Disease, Disease stage
View SamplesSome neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life. Overall design: 16 samples (4 biological replicates per group) were analysed using RNA sequencing. The 4 groups were: Normoxia+Saline (control sample), Normoxia+MitoQ-NP, Hypoxia+Saline and Hypoxia+MitoQ-NPs. Pair-wise comparison between all groups was performed.
Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells.
Cell line, Time
View SamplesPU.1 is an Ets family transcription factor that is essential for the differentiation of both myeloid and lymphoid cells. PU.1 is down-regulated in classical Hodgkin lymphoma cells via methylation of the PU.1 promoter. To evaluate whether down-regulation of PU.1 is essential for the growth of cHL cells, we generated KM-H2 derived cell lines conditionally express PU.1 by tet-off system (designated KM-H2tetPU.1). Conditonally expressed PU.1 by tetracycline removal induced complete growth arrest and apoptosis in KM-H2 cells. To elucidate the mechanisms underlying cell cycle arrest and apoptosis induced by PU.1, we compared gene expression profiles of KM-H2tetPU.1 cells 0, 1 and 3 days after PU.1 induction, by DNA microarray.
PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells.
Cell line, Time
View SamplesDiscrimination between self vs. non-self and adequate response to infection and tissue damage are fundamental functions of the immune system. The rapid and global spread of known and emerging viruses is a testament that the timely detection of viral pathogens that reproduce within host cells, presents a formidable challenge to the immune system. To gain access to a proper reproductive niche, many pathogens travel via the host vasculature and therefore become exposed to humoral factors of the innate immune system. Although a cascade of coagulation factors plays a fundamental role in host defense for living fossils such as horseshoe crabs (Xiphosurida spp), the role of the coagulation system in activation of innate responses to pathogens in higher organisms remains unclear. When human type C adenovirus (HAdv) enters the circulation, 240 copies of coagulation factor X (FX) bind to the virus particle with picomolar affinity. Here, using molecular dynamics flexible fitting (MDFF) and high resolution cryo-electron microscopy (cryo-EM), we defined the interface between the HAdv5 hexon protein and FX at pseudo-atomic level. Based on this structural data, we introduced a single amino acid substitution, T424A, in the hexon that completely abrogated FX interaction with the virus. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of the early response genes, whose expression depends on transcription factor NFKB1. Deconvolution of the signaling network responsible for early gene activation showed that the FX-HAdv complex triggers MyD88/TRIF/TRAF6 signaling upon activation of toll-like receptor 4 (TLR4) that serves as a principal sensor of FX-virus complex in vivo. Our study implicates host factor decoration of the virus as a mechanism to trigger innate immune sensor that respond to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell. Our results further the mounting evidence of evolutionary conservation between the coagulation system and innate immunity.
Coagulation factor X activates innate immunity to human species C adenovirus.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation.
Specimen part
View Samples