The exposure to and contamination by Persistent Organic Pollutants (POPs), which include pesticides used worldwide and polyaromatic hydrocarbons, is detrimental to human health and diverse ecosystems. Although most mechanistic studies have focused on single compounds, living organisms are exposed to multiple environmental xenobiotics, simultaneously, throughout their lives. The experimental evidence useful for assessing the effects of exposure to pollutant mixtures is scarce. We investigated the effects of exposure to a combination of two POPs, which employ different xenosensors, on global gene expression in a human hepatocyte cell model, HepaRG.
Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism.
Specimen part
View SamplesHigh cholesterol diet and xenobiotic treatment induce changes in cholesterol homeostasis and drug metabolism. Mice were either 7 days on high cholesterol diet or were treated with phenobarbital. Liver samples were anayzed using Affymetrix GeneChip MOE430A.
The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism.
Sex, Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development.
Specimen part, Cell line, Treatment
View SamplesWe have mapped transcriptional changes after depletion of the histone demethylases JMJD2C/GASC1/KDM4C and JMJD2A/KDM4A alone or in combination in the esophageal squamous carcinoma cell line, KYSE150. The KYSE150 cell line contains an amplification of the JMJD2C locus.
The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development.
No sample metadata fields
View SamplesBone marrow derived macrophages 1 M CpG or 20 g/ml TDB, an analogon to the mycobacterial cord factor TDM for 8h, 24h, 48h and 72h respectively.
Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation.
No sample metadata fields
View SamplesBone marrow derived macrophages from wt and card9 KO mice were stimulated with CpG, Curdlan or TDB, an analogon to the mycobacterial cord factor TDM for 48h, respectively.
Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation.
No sample metadata fields
View SamplesThe objective of this study was to decipher the molecular basis of feed efficiency in meat-type chicken using duodenum tissues from a chicken population divergently selected for residual feed intake (RFI). Residual feed intake is the deviation of expected feed intake from actual feed intake. Chickens that consume less feed than expected are efficient (LRFI) and chickens that consume more feed than expected are inefficient (HRFI). A divergent selection for RFI was undertaken using an unselected random bred chicken population. RFI at day 35-42 was used as a criterion for selecting low (LRFI) and high (HRFI) RFI. Duodenum tissues were collected from 16 male chickens under sterile conditions experimentation. Tissues were collected from 4 males at days 35 and 42 in each line.
Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens.
Specimen part
View SamplesBackground: Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeqTM Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq.To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Results: Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson’s r=0.92) and Ion Torrent Proton (Pearson’s r=0.92). We used ROC, Matthew’s correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Conclusions: Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy. Overall design: Comprehensive, performance evaluation of AmpliSeq Transcriptome to standard whole-transcriptome RNA-sequencing methods for large-scale, genome-wide differential gene expression analysis. We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs).
Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.
No sample metadata fields
View SamplesWe examined early and late gene expression changes using the IT LPS model of Acute Lung Injury (ALI). In this model, injury peaks at day 4 and is almost completely resolved by day 10 in wild type (WT) C57BL/6 mice. In contrast to the pattern in WT mice, lymphocyte-deficient Rag-1 -/- mice exhibit strikingly delayed resolution despite similar initial injury.
Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling.
Sex, Specimen part, Treatment, Time
View SamplesChickens divergently selected for either high growth (HG genotype) or low growth (LG genotype) at SRA-INRA, France were used to profile abdominal adipose gene expression at 7 wk of age. The HG and LG chickens are different in various phenotypic and metabolic measurements, including growth rate, abdominal fat, plasma glycemia, insulinemia, T4, T3, triglyceride and NEFA. The HG and LG chickens are valuable as a model for biomedical and agricultural traits. Massively parallel RNA sequencing (RNA-Seq) was completed on an Illumina HiSeq 2000 System for transcription analysis of HG and LG abdominal fat. Need information on data processing, statistical analysis, and differential expression. Keywords: abdominal fat, divergently selected chickens, growth, transcriptional profiling, differentially expressed genes Overall design: Abdominal fat mRNA profiles of high growth (HG genotype) or low growth (LG genotype) chickens at 7 weeks of age were generated by deep sequencing (on an Illumina HiSeq 2000 system).
Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ.
Age, Specimen part, Subject
View Samples