Here we quantified the transcription start site usage in a WT strain (BY4741) and a ?set2 strain associated with the appearence of cryptic transcription start sites. Overall design: Transcription start site usage was quantified using the 5’cap sequencing aproach for S. cerevisiae strains. Biological duplicates were included.
A high-throughput ChIP-Seq for large-scale chromatin studies.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.
Specimen part, Disease, Disease stage, Cell line
View SamplesNijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in Nijmegen, Holland. The characteristics of NBS include genomic instability (resulting in early onset of malignancies), premature aging, microcephaly and other growth retardations, immune deficiency, and impaired puberty and fertility in females. The consequence of these manifestations is a severe decrease in average life span, caused by cancer or infection of the respiratory and urinary tract. We reprogrammed fibroblasts from NBS patients into induced pluripotent stem cells (iPSCS) to bypass premature senescence and to generate an unlimited cell source for modeling purposes. We screened the influence of antioxidants on intracellular levels of ROS and DNA damage and found that EDHB was able to decrease DNA damage in the presence of high oxidative stress. Furthermore, we found that NBS fibroblasts, but not NBS-iPSCs were more susceptible to the induction of DNA damage than their normal counterparts. We performed global transcriptome analysis comparing NBS to normal fibroblasts and NBS-iPSCs to hESCs. There, we found, that TP53 was activated and cell cycle genes broadly down-regulated in NBS fibroblasts and up-regulation of glycolysis specifically in NBS-iPSCs.
Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.
Specimen part, Disease, Disease stage, Cell line
View SamplesNijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in Nijmegen, Holland. The characteristics of NBS include genomic instability (resulting in early onset of malignancies), premature aging, microcephaly and other growth retardations, immune deficiency, and impaired puberty and fertility in females. The consequence of these manifestations is a severe decrease in average life span, caused by cancer or infection of the respiratory and urinary tract. We reprogrammed fibroblasts from NBS patients into induced pluripotent stem cells (iPSCS) to bypass premature senescence and to generate an unlimited cell source for modeling purposes. We screened the influence of antioxidants on intracellular levels of ROS and DNA damage and found that EDHB was able to decrease DNA damage in the presence of high oxidative stress. Furthermore, we found that NBS fibroblasts, but not NBS-iPSCs were more susceptible to the induction of DNA damage than their normal counterparts. We performed global transcriptome analysis comparing NBS to normal fibroblasts and NBS-iPSCs to hESCs. There, we found, that TP53 was activated and cell cycle genes broadly down-regulated in NBS fibroblasts and up-regulation of glycolysis specifically in NBS-iPSCs.
Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.
Specimen part, Disease, Disease stage
View SamplesNijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress and abnormal cell cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show down-regulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed new light on the molecular mechanisms underlying this severe syndrome and further expand our knowledge of the genomic stress cells experience during the reprogramming process.
Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients.
Sex, Specimen part
View SamplesThis study provides the first comprehensive analysis of gene expression and transcriptome dynamics of bovine metaphase II oocytes and in vivo developing bovine embryos.
Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo.
No sample metadata fields
View SamplesGene expression analyis of two hESCs, two human neonatal fibroblasts, and four human iPSCs generated with retroviral transduction using the OSKM cocktail.
Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming.
Specimen part, Cell line
View SamplesGene expression analyis of two neonatal fibroblasts (BJ and HFF1), one adult dermal fibroblasts (NFH2), two BJ-derived human iPSCs (iB4 and iB5), two HFF1-derived iPSCs (iPS 2 and iPS4), four NFH2-derived iPSCs (OiPS3, OiPS6, OiPS8, OiPS16), one amniotic fluid cells and three derived iPSCs (lines 4, 5, 6, 10, and 41), two human ES cells (H1 and H9), neonatal fibroblasts transduced with the four retroviral factors (OKSM) after 24h, 48h, and 72h, neonatal fibroblasts treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts transduced with four factors and treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts knocked down for HIF1A (HIF1-KD) and for a scrambled sequence (SCR-KD)
HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.
Age, Specimen part, Cell line
View SamplesWe compared the transcriptom between respondrs and non-responders before and after PD-1 blockade therapy in melanoma patients, and defined their difference in context of T cell function. Overall design: We had 4 sapmles from 2 cohorts of patients collected before and after PD-1 ICI therapy according to their responses to PD-1 ICI therapy.
CX3CR1 identifies PD-1 therapy-responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy.
Subject
View Samples