Multiple myeloma (MM) is a malignant plasma cell disorder with well-defined clonal genetic/cytogenetic abnormalities. However, cellular heterogeneity is a key factor in MM's progression, therapeutic decision, and response to treatment. Single cell whole transcriptome profiling (scRNA-Seq) offers an opportunity to dissect this molecular heterogeneity during MM progression to better understand the disease and guide rational therapy. Here, we examined 597 CD138 positive cells from 15 patients at different stages of MM progression using scRNA-Seq. We selected 790 genes based on a Coefficient of Variation (CV) approach which organized cells into four clusters (L1-L4) based on unsupervised clustering. Plasma cells from each patient contained a mixed population of plasma cells at different state of aggressiveness based on gene expression signature reflecting the inter-cellular heterogeneous nature of MM. Cells in the L1 group is characterized by low level expression of genes involved in the oxidative phosphorylation, Myc targets, and mTORC1 signaling pathway having most cells from MGUS patients (p < 1.2x10-14). In contrast, low level of these genes in L1 group increased progressively and were the highest in the L4 group containing only cells from high-risk MM patients with t(4;14) translocations. Furthermore, 44 genes consistently overexpressed by pair-wised comparisons of the four groups strongly associated with a reduced overall survival in MM patients (APEX trial, p < 0.0001; Hazard Ratio (HR), 1.83; 95% CI, 1.33 to 2.52), particularly those in the bortezomib treated group (p < 0.0001; HR, 2.00; 95% CI, 1.39 to 2.89). No survival significance was observed for the dexamethasone treated group. Our study at the resolution of single cells showed that there is a mixed population of cells in each patient at different stages of MM progression and these cells can be organized into four different subgroups (L1 to L4). Consistent overexpression of the 44 genes from L1 to L4 groups is associated with patient outcome and treatment response. Our results show that oxidative phosphorylation, Myc target, and mTORC1 signaling genes are significant pathways for MM progression and affect MM prognosis and treatment stratification. Overall design: 597 single cell libraries passed QC and were included in the downstream analysis
Molecular signatures of multiple myeloma progression through single cell RNA-Seq.
No sample metadata fields
View Samples.
AlleleSeq: analysis of allele-specific expression and binding in a network framework.
No sample metadata fields
View SamplesAutism spectrum disorder (ASD) is a disorder of brain development believed, in most cases, to be of genetic origin. We use induced pluripotent stem cells (iPSCs)-derived 3-dimensional neural cultures (organoids) in patients with ASD and macrocephaly to investigate neurodevelopmental alterations that cause this form of ASD. By using transcriptome analyses, we identified modules of co-expressed genes significantly upregulated in ASD patients compared to non-ASD first-degree family members. Overall design: Total RNA was prepared from terminal differentiation day 0, 11 and 31 of iPSCs-derived neural cultures from ASD patients and non-ASD first-degree family members. A total of 4 patients and 8 controls (unaffected family members) were analyzed in replicates (two to three iPSC clones per person).
FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders.
No sample metadata fields
View SamplesReprogramming human somatic cells into induced pluripotent stem cells (iPSC) has been suspected of causing de novo copy number variations (CNVs). To explore this issue, we performed a whole-genome and transcriptome analysis of 20 human iPSC lines derived from primary skin fibroblasts of 7 individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two CNVs not apparent in the fibroblasts from which the iPSC was derived. Using qPCR, PCR, and digital droplet PCR (ddPCR) to amplify across the CNVs'' breakpoints, we show that at least 50% of those CNVs are present as low frequency somatic genomic variants in parental fibroblasts and are manifested in iPSC colonies due to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSC, since most of line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically. Overall design: We have generated and characterized hiPSC lines derived from skin fibroblasts collected from seven members of two families, which were competent to be differentiated into neuronal progenitors and neurons
Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.
Specimen part, Subject
View SamplesAim: Differentiation of cardiac fibroblasts (Fb) into myofibroblasts (MyoFb) is responsible for connective tissue buildup in myocardial remodeling. We examined reversibility of MyoFb differentiation. Methods and Results: Adult rat cardiac Fb were cultured on a plastic substratum providing mechanical stress, with conditions to obtain different Fb phenotypes. Fb spontaneously differentiated to proliferating MyoFb (p-MyoFb) with stress fiber formation decorated with alpha-smooth muscle actin (-SMA). Transforming growth factor-1 (TGF-1) promoted terminal differentiation into -SMA positive MyoFb showing near absence of proliferation i.e. non-p-MyoFb (2-fold increase in cell number after 12 days vs 11-fold for p-MyoFb). SD-208, a TGF--receptor-I kinase blocker, inhibited p-MyoFb differentiation as shown by stress fiber absence, low levels of -SMA protein expression, and high levels of proliferation (32-fold increase after 12 days). Fb seeded in collagen matrices induced no contraction, whereas p-MyoFb and non-p-MyoFb induced 2.5- and 4-fold contraction. Fb produced low levels of collagen and secreted high levels of IL-10. Non-p-MyoFb showed high collagen production and high MCP-1 and TIMP-1 secretion. Transcriptome analysis indicated differential gene expression between all phenotypes. Dedifferentiation of p-MyoFb, but not of non-p-MyoFb, was induced by SD-208 despite maintained stress, shown by stress fiber de-polymerization in 30% of p-MyoFb vs in 8% of non-p-MyoFb. Stress fiber de-polymerization could be induced by mechanical strain release in p-MyoFb and non-p-MyoFb (2 day culture in unrestrained 3-D collagen matrices). Only p-MyoFb showed true dedifferentiation after long-term 3-D culture. Conclusions: Both reduction in mechanical strain and TGF--receptor-I kinase inhibition can reverse p-MyoFb differentiation but not in non-p-MyoFb.
Reversible and irreversible differentiation of cardiac fibroblasts.
Sex, Specimen part
View SamplesOrgan transplant recipients (OTRs) on Cyclosporine A (CSA) are prone to catastrophic cutaneous squamous cell carcinoma (SCC). Allograft-sparing, cancer-targeting systemic treatments are unavailable. We have shown increased risk for catastrophic SCC in OTRs via CSA-mediated induction of Interleukin-22 (IL-22). Herein, we found CSA drives SCC proliferation and tumor growth through IL-22 and JAK/STAT pathway induction. We in turn inhibited SCC growth with an FDA-approved JAK 1/2 inhibitor, Ruxolitinib. In human SCC cells, greatest proliferative response to IL-22 and CSA treatment occurred in non-metastasizing lines. IL-22 treatment upregulated JAK1 and STAT1/3 in A431 SCC cells. JAK/STAT pathway genes were highly expressed in tumors from a cohort of CSA-exposed OTRs, and in SCC with high risk for metastasis. Compared to immunocompetent SCC, genes associated with innate immunity, response to DNA damage and p53 regulation were differentially expressed in SCC from OTRs. In nude mice engrafted with human A431 cells, IL-22 and CSA treatment increased tumor growth and upregulated IL-22 receptor, JAK1 and STAT 1/3 expression. Ruxolitinib treatment significantly reduced tumor volume and reversed the accelerated tumor growth. CSA and IL-22 exacerbate aggressive behavior in SCC. Targeting the IL-22 axis via selective JAK/STAT inhibition may reduce the progression of aggressive SCC in OTRs, without compromising immunosuppression.
Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma.
No sample metadata fields
View SamplesPD-L1 suppresses host immunity and promotes tumor growth. We investigated how IFN- regulates PD-L1 in the ovarian cancer microenvironment. In clinical samples, the number of stromal CTLs in peritoneally disseminated tumors was correlated with PD-L1 expression on the tumor cells, and the lymphocyte number was significantly related to the IFN- signature score. In mouse models, PD-L1 was induced in peritoneal disseminated tumors, where lymphocytes were prominent, but not in subcutaneous tumors. Depleting IFNGR1 resulted in lower PD-L1 expression and longer survival in peritoneal dissemination model. Injection of IFN- into subcutaneous tumors increased PD-L1 expression and tumor size, and PD-L1 depletion abrogated tumor growth. These data suggest that IFN- works as a tumor progressor through PD-L1 induction. The source of IFN- in ovarian cancer microenvironment and its biological effect to the tumor cells is unclear. The immortalized human ovarian surface epithelial cell line, HOSE-E7/hTERT (HOSE) was treated with IFN- and expression microarray analysis was performed, and probes showing significantly higher values in IFN--added group were termed IFN- signature genes (295 probes). We then applied this signature to our ovarian cancer microarray data, which included 75 ovarian cancer clinical samples, by means of ss-GSEA. IFN- signature score was strongly correlated to the number of infiltrating CD4-positive or CD8-positive lymphocytes in the tumors. These data suggest that the IFN- in the ovarian cancer microenvironment is derived from lymphocytes, and an IFN--rich microenvironment is strongly correlated to a lymphocyte-rich microenvironment.
IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer.
Specimen part
View SamplesThe patients with locally advanced squamous cervical cancer (SCC) were examined in this study. All patients received neoadjuvant chemotherapy followed by radical hysterectomy. Tumor response against NAC was determined based on RECIST criterior. Gene-expression profiles of SCC were determined using Human Genome GeneChip arrays U133.
Genomic profile predicts the efficacy of neoadjuvant chemotherapy for cervical cancer patients.
Specimen part
View SamplesThe source of IFN- in ovarian cancer microenvironment and its biological effect to the tumor cells is unclear. The immortalized human ovarian surface epithelial cell line, HOSE-E7/hTERT (HOSE) was treated with IFN- and expression microarray analysis was performed, and probes showing significantly higher values in IFN--added group were termed IFN- signature genes (295 probes). We then applied this signature to our ovarian cancer microarray data, which included 75 ovarian cancer clinical samples, by means of ss-GSEA. IFN- signature score was strongly correlated to the number of infiltrating CD4-positive or CD8-positive lymphocytes in the tumors. These data suggest that the IFN- in the ovarian cancer microenvironment is derived from lymphocytes, and an IFN--rich microenvironment is strongly correlated to a lymphocyte-rich microenvironment.
IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer.
Specimen part, Cell line, Treatment
View SamplesAnalysis of murine cardiomyocyte cell line HL-1 treated with Ivermectin or Importazole. Results provide insight into the pathways regulated by the treatments. Overall design: RNA-seq of mouse HL-1 cardiomyocytes treated with vehicle (DMSO), Ivermectin, or Importazole for 24 hours, in triplicate, using Ion Proton System.
Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia.
Specimen part, Cell line, Treatment, Subject
View Samples