To identify gene expression that distinguishes hematopoietic cells that express PRAME from those that do not, normal CD34+ cells with forced PRAME expression were compared to cells without PRAME expression in culture over time (days 4, 7, 14) using Affymetrix HU-133A microarrays
The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells.
Specimen part, Time
View SamplesThe role of Striatin Interacting Protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2 silenced (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that KD ESCs remain undifferentiated. This occurs even in 16-day old EBs, which possessed a high tumorigenic potential. Correlated with very high expression levels of epigenetic regulator genes, Hat1 and Dnmt3, enzymatic activities of the histone acetyltransferase type B (HAT1) and DNA (cytosine-5)-methyltransferase 3 beta (DNMT3b) were higher in differentiated 16-day old KD EBs than in SCR or WT EBs. The expression levels of let-7, 290 and 302 microRNA families were opposed in KD ESCs, while KD EBs had levels comparable to WT and SCR ESCs during differentiation. This demonstrates that Strip2 is critical to the onset of differentiation, regulating expression of epigenetic regulators, HAT1 and DNMT3b, as well as microRNAs involved in pluripotency.
STRIP2 Is Indispensable for the Onset of Embryonic Stem Cell Differentiation.
Sex, Specimen part
View SamplesHodgkin's lymphoma (HL) is one of the most frequent hematological malignancies. Due to its extraordinary composition, few tumor cells surrounded by a reactive infiltrate, HL can be seen as an ideal model system for research focusing on tumor immunology. In fact, the tumor cells of HL, so called Hodgkin/Reed-Sternberg (HRS) cells attract CD4+ T cells, which then build rosettes with the HRS cells. HRS cells further modulate the tumor microenvironment with the help of CD4+ T cells to avoid tumor rejection. Here, we mimicked this scenario using compatible CD4+ T cells receiveing data of profound interactions for the first time, as former studies were performed with allogeneic donors. Finally, we genetically retargeted compatible CD4+ T cells to kill HRS cells.
Tumor-infiltrating HLA-matched CD4(+) T cells retargeted against Hodgkin and Reed-Sternberg cells.
Cell line
View Samples