This SuperSeries is composed of the SubSeries listed below.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View Samples