github link
Accession IconSRP168242

Preparing for the first breath at single cell level [whole lung time course]

Organism Icon Mus musculus
Sample Icon 16 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
The respiratory system undergoes remarkable structural, biochemical, and functional changes necessary for adaptation to air breathing at birth. To identify dynamic changes in gene expression in the diverse pulmonary cells at birth, we performed Drop-seq based massive parallel single-cell RNA sequencing. An iterative cell type identification strategy was used to unbiasedly identify the heterogeneity of murine pulmonary cell types on postnatal day 1. Distinct populations of epithelial, endothelial, mesenchymal, and immune cells were identified, each containing distinct subpopulations. Cell type predictions and signature genes identified using Drop-seq were cross-validated using an independent single cell isolation platform. Temporal changes in RNA expression patterns were compared before and after birth to identify signaling pathways selectively activated in specific pulmonary cell types, demonstrating activation of UPR signaling during perinatal adaptation of the lung. Present data provide the first single cell view of the adaptation to air breathing after birth. All data from the present study are freely accessed at https://research.cchmc.org/pbge/lunggens/SCLAB.html. Overall design: Embryos and mice for this study were collected from timed pregnant mice. Whole lungs were surgically dissected at embryonic (E) days 16.5, 18.5 and postnatal days (PND) 1, 3, 7, 14, and 28
PubMed ID
Total Samples
16
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...