Description
HIV+ Elite and Viremic controllers (EC/VCs) are able to control virus infection, perhaps because of host genetic determinants. We identified 16% (21 of 131) EC/VCs with CD4+ T cells with resistance specific to R5-tropic HIV, reversed after introduction of CCR5. R5 resistance was not observed in macrophages and depended upon the method of T cell activation. CD4+ T cells of these EC/VCs had lower CCR2 and CCR5 mRNA levels, reduced CCR2 and CCR5 cell-surface expression, and decreased levels of secreted chemokines. T cells had no changes in chemokine receptor mRNA half-life but instead had lower levels of active transcription of CCR2 and CCR5, despite having more accessible chromatin by Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq). Other nearby genes were also down-regulated, over a region of ~500kb on chromosome 3p21. This same R5 resistance phenotype was observed in family members of an index VC, also associated with CCR2/CCR5 down-regulation, suggesting that the phenotype is heritable. Overall design: RNA-seq was performed to identify up- or down-regulated genes associated with in vitro resistance to R5-tropic viruses in activated CD4+ T cells from HIV+ Elite Controllers and family members