Description
Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P=3.1 x 10-12) BMD locus on Chromosome 3@52.5 Mbp that replicated in two seperate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Â Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts and its expression was regulated by local expression QTL (eQTL) in multiple tissues. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/-) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- displayed increased osteogenic differentiation. Lfhp-/- mice also had elevated BMD due to increased cortical bone mass. In conclusion, we used GWAS and systems genetics in mice to identify Lhfp as a regulator of osteoblast activity and bone mass. Overall design: Bones and osteoblast-derived from bone marrow stromal cells were profiles using RNA-seq from CC0016/GeniUnc mice (N=3 biological replicates per sample type)