Description
A subpopulation of pericytes expressing the Glast-CreERT2 transgene (Type A pericytes) has recently been identified as the main source of stromal scar tissue that forms after SCI. Identification of molecules associated with pericyte-derived scarring may offer new therapeutic targets to facilitate axon regeneration following central nervous system (CNS) injury. We conducted genome-wide RNA sequencing of (i) uninjured spinal cord segments and (ii) lesion sites presenting full or attenuated pericyte-derived scarring 14 days after SCI. Overall design: Adult Glast-Rasless-YFP (Glast-CreERT2 x R26R-YFP x Rasless) mice receiving vehicle (Veh) or tamoxifen (Tam) underwent dorsal hemisection at high thoracic level. Fourteen days after SCI, injury sites were dissected out, homogenized and total RNA was isolated from lesions presenting (i) dense (Veh, n=4) and (ii) attenuated (Tam, n=4) pericyte-derived scarring. Age-matched Glast-Rasless-YFP mice served as uninjured controls (n=4).