Description
Rapid nerve conduction in the CNS is facilitated by the insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics is not well understood. Hypothesizing that only a fraction of all myelin-related mRNAs has been identified so far, we subjected myelin biochemically purified from mouse brains at various ages to RNA sequencing. We find a surprisingly large pool of transcripts abundant and/or enriched in myelin. Furthermore, a comprehensive analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting that the incorporation of mRNAs into the myelin compartment is highly selective. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months of age were minor. We suggest that this transcript pool provides a basis for the local modulation of myelin turnover and adaptation, i.e. in the individual internode. Overall design: A light-weight membrane fraction enriched for myelin was purified from mouse brains as described previously (Jahn et al., Neuromethods, 2013). For RNA-Seq, RNA was isolated from myelin of mice from indicated ages.