github link
Accession IconSRP064410

Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs

Organism Icon Homo sapiens
Sample Icon 10 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
The human nuclear poly(A)-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs). In addition, PABPN1 stimulates hyperadenylation by poly(A) polymerase, and this activity is thought to be required for decay. Here, we inactivated hyperadenylation by two distinct mechanisms and examined changes in gene expression in HEK293 cells by RNAseq. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPa/?-mediated decay (PPD). Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts. Overall design: Poly(A)+ RNA from HEK293 cells was analyzed by next generation sequencing following depletion of PAPa and PAP? or expression of a dominant negative allele of PABPN1 (LALA) designed to inhibit polyadenylation. For each condition, we collected both total RNA and a nuclear-enriched sample. Each sample was collected in duplicate.
PubMed ID
Total Samples
10
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...