Description
Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem cells (ISCs) of the mammalian intestine. Like HFD, ex vivo treatment of intestinal organoid cultures with palmitic acid (PA), a constituent of the HFD, enhances the self-renewal potential of these organoid bodies. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-delta signature in intestinal stem and progenitor cells and pharmacologic activation of PPAR-delta recapitulates the effects that HFD has on these cells. Interestingly, HFD- and agonist-activated PPAR-delta signaling endows organoid-initiating capacity to non-stem cells and enforced PPAR-delta signaling permits these non-stem cells to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-delta activation alters not only the function of intestinal stem and progenitor cells but also their capacity to initiate tumors. Overall design: mRNA profiles of intestinal stem cells (GFP-Hi) and progenitors (GFP-Low) from WT or HFD fed mice were generated by deep sequencing using HiSeq 2000.