Description
Necrotizing enterocolitis (NEC) is the most frequent life-threatening gastrointestinal disease experienced by premature infant occuring in neonatal intensive care units. NEC is associated with severe intestinal inflammation, intestinal perforation leading to mortality. The challenge for neonatologists is to detect early clinical manifestations of NEC. Therefore, one of the strategies to prevent or treat NEC would be to develop an early diagnostic tool allowing identification of preterm infants either at risk of developing NEC or at the onset of the disease. Illumina’s deep sequencing technology (RNA-seq) was used to establish the gene expression profile between resected ileal healthy preterm (control, n=5) and NEC diagnosed preterm infant (NEC, n=9) and analyzed by IPA Core analysis system. IPA analysis indicated that the most significant functional pathways overrepresented in NEC neonates were associated with innate immune functions, such as altered T and B cell signaling, B cell development, and the role of pattern recognition receptors in recognition of bacteria and viruses. Among genes that were strongly modulated in NEC neonates, we observed a high degree of similarity with those linked to the development of IBD. By comparing gene expression patterns between NEC and Crohn’s disease, we identified several new potential protein targets for helping to predict and/or diagnose NEC in preterm infant. Gene expression profile revealed an uncontrolled innate immune response in the intestine of NEC neonates. Moreover, comparative analysis between NEC and Crohn’s disease evidenced high degree of similarity between these two inflammatory diseases and allowed us to identify several new potential NEC biomarkers. Overall design: Illumina’s deep sequencing technology (RNA-seq) was used to establish the gene expression profile between resected ileal healthy preterm (control, n=5) and NEC diagnosed preterm infant (NEC, n=9)