github link
Accession IconSRP048599

Regulation of alternative cleavage and polyadenylation by 3' end processing and splicing factors

Organism Icon Mus musculus
Sample Icon 66 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer II, Illumina HiSeq 2500

Submitter Supplied Information

Description
Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3' untranslated regions (3'UTRs) and/or coding sequences. How core cleavage and polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3'UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1, and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly influencing C/P events in 5' introns and U2 impacting those in efficiently spliced introns. Furthermore, PABPN1 regulates expression of transcripts with pAs near the transcription start site, a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results indicate that the abundance of different C/P factors and splicing factors plays diverse roles in APA, and is relevant to APA regulation in biological conditions. Overall design: knockdown experiments of 23 C/P factors, 3 splicing factors and U1D in mouse C2C12 myoblast cells
PubMed ID
Total Samples
81
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...