Description
G9a/GLP and Polycomb Repressive Complex 2 (PRC2) are two major epigenetic silencing machineries, which in particular methylate histone H3 on lysines 9 and 27 (H3K9 and H3K27), respectively. Although evidence of a crosstalk between H3K9 and H3K27 methylations has started to emerge, their actual interplay remains elusive. Here, we show that PRC2 and G9a/GLP interact physically and functionally. Moreover, combining different genome-wide approaches, we demonstrate that Ezh2 and G9a/GLP share an important number of common genomic targets, encoding developmental and neuronal regulators. Furthermore, we show that G9a enzymatic activity modulates PRC2 genomic recruitment to a subset of its target genes. Taken together, our findings demonstrate an unanticipated interplay between two main histone lysine methylation mechanisms, which cooperate to maintain silencing of a subset of developmental genes. Overall design: RNA-seq has been perform in triplicate on mES cell (TT2 : Wildtype, and KO G9a-/-)