Description
Protective interactions with bystander cells in micro-environmental niches such as lymph nodes (LNs) contribute to survival and therapy resistance of chronic lymphocytic leukemia (CLL) cells. This is caused by a shift in expression of BCL-2 family members. Pro-survival proteins BCL-XL, BFL-1, and MCL-1 are upregulated by LN-residing T cells through CD40L interaction, presumably via NF-B signaling. Macrophages also reside in the LN, and are assumed to provide important supportive functions for CLL cells. However, if and how macrophages are able to induce survival is incompletely known. We first established that macrophages induced survival due to an exclusive upregulation of MCL-1. Next, we investigated the mechanism underlying MCL-1 induction by macrophages in comparison with CD40L. Genome-wide expression profiling of in vitro macrophage- and CD40L-stimulated CLL cells indicated activation of the PI3K-AKT-mTOR pathway, which was confirmed in ex vivo CLL LN material. Inhibition of PI3K-AKT-mTOR signaling abrogated MCL-1 upregulation and survival by macrophages as well asCD40 stimulation. MCL-1 can be regulated at multiple levels, and we established that AKT leads to increased MCL-1 translation, but does not affect MCL-1 transcription or protein stabilization. Furthermore, among macrophage-secreted factors that could activate AKT, we found that induction of MCL-1 and survival critically depended on C-C Motif Chemokine Receptor-1 (CCR1). In conclusion, this study indicates that two distinct micro-environmental factors, CD40L and macrophages, signal via CCR1 to induce AKT activation resulting in translational stabilization of MCL-1, and hence can contribute to CLL cell survival.