github link
Accession IconGSE77434

Functionally relevant prediction model for colorectal cancer

Organism Icon Homo sapiens
Sample Icon 41 Downloadable Samples
Technology Badge Icon Affymetrix Human Human Exon 1.0 ST Array (huex10st)

Submitter Supplied Information

Description
Filtered selection coupled with support vector machines generate functionally relevant prediction model for colorectal cancer. In this study, we built a model that uses Support Vector Machine (SVM) to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300 and 500 genes most relevant to CRC using the Minimum-RedundancyMaximum-Relevance (mRMR) technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function and sigmoid).
PubMed ID
Total Samples
41

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Disease stage
Processing Information
Additional Metadata
No rows found
Loading...