Description
Despite its high prevalence and economic burden, the etiology of human hypertension remains incompletely understood. Here we identify the transcription factor Gata5, as a new gene involved in regulation of blood pressure (BP). GATA5 is expressed in microvascular endothelial cells (mEC) and its genetic inactivation in mice leads to hypertension, vascular endothelial dysfunction and renal inflammation. Aged Gata5-Null mice develop salt-sensitivity and target-organ damage reminiscent of the progression of human hypertension. Endothelial-specific inactivation of Gata5 increases BP and leads to vascular endothelial dysfunction, confirming the endothelial component of Gata5 inactivation-related hypertension. To directly assess the effect of loss of GATA5 on endothelial cells, we generated a stable GATA5 knockdown cell line (HDMEC-Gata5KO) by infecting human dermal microvascular endothelial cells with a lentiviral vector containing an anti-Gata5 shRNA followed by a transcriptomic analysis. The control cells were infected with a lentivirus containing an empty vector pLKO2.