Description
Bud endodormancy induction response of two genotypes (Seyval a hybrid white wine grape and V. riparia, PI588259 a native north american species) was compared under long and short photoperiod. Three separate replicates (5 plants/replicate) were treated in each of 2 separate years (2007 and 2008) to generate paradormant (LD) and same aged endodormancy-induced (SD) buds for transcriptomic, proteomic and metabolomic analysis. Potted, spur-pruned two to six-year-old vines were removed from cold storage (Seyval 3-19-07, 3/18/08; V. riparia 3/26/07, 3/24/08) and grown under a LD (15 h) at 25/20 + 3C day/night temperatures (D/N). When vines reached 12-15 nodes they were randomized into groups for differential photoperiod treatments. On 4/30/07 and 4/28/08 LD and SD (13 h) treatments were imposed with automated photoperiod system (VRE Greenhouse Systems). Temperatures were maintained at 25/20 + 3C D/N. Three replications (5 vines/replication) were harvested between 5/07-6/07 and then again in 5/08-6/08. At 1, 3, 7, 14, 21, 28 and 42 days of differential photoperiod treatment, buds were harvested from nodes 3 to 12 (from the base of the shoot) of each separate replicate, immediately frozen in liquid nitrogen, and placed at -80C for future RNA, protein and metabolite extraction. These time points encompass early reversible phases as well as key time points during transition to irreversible endodormancy development. After photoperiod treatments and bud harvests, all pruned vines were returned to LD and monitored for bud endodormancy. The endodormant vines were identified after 28 days and moved to cold storage. The nondormant vines were allowed to grow again and induced into dormancy at a later date. Acknowledgement:This study was funded by NSF Grant DBI0604755 and funds from the South Dakota Agriculture Experiment Station. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Anne Fennell. The equivalent experiment is VV18 at PLEXdb.]