Description
Fibroblasts are present in every organ. While the role fibroblasts in chronic diseases such as fibrosis or tumor expression has been extensively explored, little is known about their physiological role. The kidney possesses a unique capacity to recover from even severe acute injury. We study molecular mechanisms of this intrinsic repair capacity in the mouse model of ischemia-reperfusion (IR). In this model, the renal artery and vein are clamped for 45 min, leading to acute kidney injury. The kidney spontaneously recovers from such IR injury within 14 days. IR kidney injury is associated with a transient accumulation of fibroblasts in the diseased tissue. We hypothesized that fibroblasts aid the repair of acute IR injury in the kidney. To elucidate how FSP1+ fibroblasts may contribute to the repair of kidney injury, we undertook a global unbiased approach to compare gene expression profiles of fibroblasts isolated from kidneys post-IRI and from control kidneys by FACS sorting.