github link
Accession IconGSE54378

Gene expression profiles of T-cell acute lymphoblastic leukemia cell lines with and without chronic GSI-treatment

Organism Icon Homo sapiens
Sample Icon 8 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Here we modeled T-ALL resistance to Notch inhibition, identifying persister cells that readily expand in the presence of gamma secretase inhibitor (GSI) and the absence of Notch signaling. Rare persister cells are already present in nave T-ALL populations, and the reversibility of the phenotype is suggestive of an epigenetic mechanism. Relative to GSI-sensitive cells, persisters activate distinct signaling and gene expression programs, and exhibit global chromatin compaction. A shRNA screen identified chromatin regulators whose depletion preferentially impairs persister cell viability, including BRD4, an acetyl-histone reader. BRD4 is up-regulated in the persisters and binds enhancers near genes with critical functions in T-ALL, including MYC and BCL2. Treatment of persisters with the BRD4 inhibitor JQ1 down-regulates these targets and induces growth arrest and apoptosis, at doses well tolerated by GSI-sensitive cells. Prompted by these findings, we examined and established the efficacy of GSI JQ1 combination therapy against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia drug resistance and suggest the potential of combination therapies that include epigenetic modulators to prevent and treat resistant disease.
PubMed ID
Total Samples
8

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found
Loading...