github link
Accession IconGSE46996

The pre-ovulatory LH surge elicits different effects on the granulosa- and theca-specific expression profiles in bovine follicles

Organism Icon Bos taurus
Sample Icon 18 Downloadable Samples
Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Submitter Supplied Information

Description
The molecular mechanisms that regulate the pivotal transformation processes observed in the follicular wall following the pre-ovulatory LH-surge, are still not established, particularly for cells of the thecal layer. To elucidate thecal and granulosa cell type-specific biological functions and signaling pathways, large dominant bovine follicles were collected before and 21 hrs after an exogenous GnRH induced LH surge. Because LH receptor density varies within the granulosa cell populations, antral granulosa (aGC; those aspirated by follicular puncture) and membrane associated granulosa (mGC; those scraped from the follicular wall) were compared to thecal cell expression profiles determined by mRNA microarrays. Thecal cell gene expression was less affected in the peri-ovulatory follicle when compared to granulosa cells, as evidenced by only 2% versus 25% of the ~11,000 genes expressed changing in response to the LH surge, respectively. The majority of the 203 LH-regulated thecal genes were also LH regulated in granulosa cells, leaving a total of 58 genes as LH-regulated theca cell specific genes. Most of the 58 genes (i.e., 74%) thecal specific genes including several known thecal markers (CYP17A1, NR5A1) were downregulated, while most genes identified are new to theca. Many of the newly identified upregulated thecal genes (e.g., PTX3, RND3, PPP4R4) were also upregulated in granulosa. Minimal expression differences were observed between aGC and mGC, however, transcripts encoding extracellular proteins (NID2) and matrix modulators (ADAMTS1, SASH1) predominated these differences. We also identified large numbers of unknown LH-regulated granulosa cell genes and discuss their putative roles in ovarian function.
PubMed ID
Total Samples
18
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...