Description
Tyrosine phosphorylation is a hallmark for activation of Signal Transducer and Activator of Transcription (STAT) proteins, but their transcriptional activity also depends on other secondary modifications. Type I interferons (IFNs) can activate both the ISGF3 (STAT1:STAT2:IRF9) complex and STAT3, but with cell-specific, selective triggering of only the ISGF3 transcriptional program. Following a genome-wide RNAi screen, we identified the Sin3a complex as an important mediator of this STAT3 transcriptional repression. Sin3a directly interacts with the DNA-binding domain of STAT3 and alters its acetylation status. SIN3A silencing enhances recruitment of STAT3 and enhanceosome components to the SOCS3 promoter, resulting in histone hyperacetylation and enhanced transcription. Conversely, Sin3a is required for ISGF3-dependent gene transcription and for an efficient IFN-mediated antiviral protection against Influenza A and hepatitis C viruses. The Sin3a complex therefore acts as a context-dependent STAT1/3 transcriptional switch.