Description
The environmental light plays a vital role in regulating the plant growth and development. Transcriptomic profilings were widely used to examine how light regulates the changes of mRNA populations at a genome-wide scale. However, it remains unclear if translational regulation represents a new dimension of gene expression regulation in response to the light signal. Through a transcriptomic comparison of steady-state and polysome-bound mRNAs, we revealed an increased translational efficiency in de-etiolating Arabidopsis seedlings. Over 3,500 genes are subjected to translational regulation whereas only about 770 genes have increased mRNA abundances in response to the light signal. This result suggests a stronger impact of translational control over transcriptomic changes during photomorphogenesis. Genes encoding ribosomal protein are preferentially regulated at the translational level, possibly contributing to the enhancement of translation efficiency as observed. We also uncovered mRNAs regulated at the translational level share characteristics of longer half-lives and shorter cDNA length. The presence of a cis-element, TAGGGTTT, in the 5untranslated region of a transcript renders its translational regulation by light signals. Taken together, our study revealed a previously neglected aspect of gene expression regulation during Arabidopsis photomorphogenesis. The identities and molecular signatures associated with mRNAs regulated at the translational level also offer new directions to perform mechanistic studies of light-trigged translational enhancement in Arabidopsis.