Description
Myeloid-derived cells comprising the tumor stroma represent a heterogeneous population of cells critical to the structure, function and growth of established cancers. We have recently found that engineering tumor-specific CD8+ T cells to secrete IL-12 (IL-12TD) can lead to striking improvements in T-cell activity against established melanomas in murine models. Surprisingly, IL-12-dependent enhancement of CD8+ T-cell anti-tumor function did not occur through direct ligation of receptors on lymphocytes or NK cells. Instead, IL-12 sensitized host bone marrow-derived tumor-stromal cells, partly through interferon-gamma, to indirectly enhance the effects of adoptively-transferred T cells. Direct presentation of antigen by tumor was not necessary, but MHC class I expression on endogenous cells was essential for IL-12 mediated anti-tumor enhancements. Upon successful treatment with IL-12TD cells, we observed the selective elimination of tumor-infiltrating CD11b+ F4/80+ macrophages, CD11b+/ClassII+/CD11c+ dendritic cells and CD11b+/Ly6C+/Ly6G- but not CD11b+/Ly6C+/Ly6G+ myeloid-derived suppressor cells within regressing lesions. These results are consistent with a model whereby IL-12 triggers the maturation of myeloid-derived cells into competent antigen cross-presenting cells. Licensed recognition of these antigens by effector T cells may in turn trigger the collapse of the tumor stroma and aid in the regression of large vascularized lesions.