Description
Growth daylength, ambient CO2 level, and intracellular hydrogen peroxide (H2O2) availability all impact plant function by modulating signalling pathways, but interactions between them remain unclear. Using a whole-genome transcriptomics approach, we exploited the conditional photorespiratory nature of the catalase-deficient cat2 mutant to identify gene expression patterns responding to these three factors. Arabidopsis Col-0 and cat2 grown for 5 weeks in high CO2 in short days (SD) were transferred to air in SD or long days (LD), and microarray analysis was performed. Of more than 500 genes differentially expressed in Col-0 between high CO2 and transfer to air in SD, the response of about one-third was attenuated by transfer to air in LD. H2O2-responsive genes in cat2 were highly dependent on daylength. The majority of H2O2-induced genes were more strongly up-regulated after transfer to air in SD than to LD, while a smaller number showed an opposing pattern. Responses of other H2O2-dependent genes indicate redox-modulation of the daylength control of fundamental cell processes. The overall analysis provides evidence that (1) CO2 level modulates stress-associated gene expression; (2) both CO2 and H2O2 interact with daylength and photoreceptor signalling pathways; and (3) cellular signalling pathways may be primed to respond to increased H2O2 in a daylength-determined manner.