github link
Accession IconGSE27693

Clone History Shapes Populus Drought Responses

Organism Icon Populus sp. cv. 'walker', Populus sp. cv. 'okanese', Populus x canadensis
Sample Icon 23 Downloadable Samples
Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Submitter Supplied Information

Description
Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically-identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally-propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome-level drought responses of three economically important hybrid genotypes: DN34 (Populus deltoides x P. nigra); Walker (P. deltoides var. occidentalis x (P. laurifolia x P. nigra)); and, Okanese (Walker x (P. laurifolia x P. nigra)) derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, where the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenetic basis for the clone-history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for both the industrial application of Populus trees, and the evolution and persistence of these important tree species.
PubMed ID
Total Samples
72
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Treatment
Processing Information
Additional Metadata
No rows found
Loading...