Description
The apical junctional complex (AJC), composed of tight junctions and adherens junctions, is essential for maintaining epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are both associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating AJC integrity in the small airway epithelium (SAE), the primary site of pathological changes in COPD. Transcriptome analysis revealed a global down-regulation of physiological AJC gene expression in the SAE of healthy smokers (n=53) compared to healthy nonsmokers (n=59), an observation associated with changes in molecular pathways regulating epithelial differentiation such as PTEN signaling and accompanied by induction of cancer-related AJC genes. Genome-wide co-expression analysis identified a smoking-sensitive AJC transcriptional network. The overall expression of AJC-associated genes was further decreased in COPD smokers (n=23). Exposure of human airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC-related genes, accompanied by decreased transepithelial resistance. Thus, cigarette smoking alters the AJC gene expression architecture in the human airway epithelium, providing a molecular basis for the dysregulation of airway epithelial barrier function during the development of smoking-induced lung disease.