Description
Post-translational regulation of the MYC Transcription Factor (TF), including its phosphorylation and ubiquitination, plays an important role in determining cell proliferation and apoptosis and has been implicated in tumorigenesis. Using a computational systems biology approach, followed by biochemical and functional validation, we have characterized the role of the STK38 kinase, an NDR family serine-threonine kinase, as a key modulator of MYC transcriptional activity in human B cells, affecting MYC protein stability in a signal-dependent fashion. Specifically, we show that in human B lymphoma ST486 cells STK38 is a key mediator of BCR pathway signaling, affecting MYC protein turnover and its phosphorylation at Ser62 in kinase-activity-dependent manner. STK38 inactivation abrogates apoptosis following BCR activation while its silencing mediates MYC protein degradation via canonical proteolytic pathways. This suggests that STK38 could provide an effective therapeutic target in MYC-dependent malignancies.