Description
Background: Healthy individuals exposed to low levels of cigarette smoke have a decrement in lung function and higher risk for lung disease compared to unexposed individuals. We hypothesized that healthy individuals exposed to low levels of tobacco smoke must have biologic changes in the small airway epithelium compared to healthy unexposed individuals. Methods: Small airway epithelium was obtained by bronchoscopy from 121 individuals; microarrays assessed genome wide gene expression, and urine nicotine and cotinine were used to categorized subjects as nonsmokers, active smokers, and low exposure. The gene expression data was used to determine the threshold and ID50 of urine nicotine and cotinine at which the small airway epithelium showed abnormal responses. Results: There was no threshold of urine nicotine without an abnormal small airway epithelial response, and only a slightly above detectable threshold abnormal response for cotinine. The nicotine ID50 for nicotine was 25 ng/ml and cotinine 104 ng/ml. Conclusions: The small airway epithelium detects and responds to low levels of tobacco smoke with transcriptome modifications. This provides biologic correlates of epidemiologic studies linking low level tobacco smoke exposure to lung health risk, health, identifies genes in the lung cells most sensitive to tobacco smoke and defines thresholds at the lung epithelium responds to inhaled tobacco smoke.